File size: 2,014 Bytes
de07127 50f4595 4afec78 b4725a8 decc59e 3bef3fb 664eb76 0b5b7f4 d49d800 8a965da a2384ba 8a965da 3b57b43 3826e01 973bb39 62ac43e 037afb0 47fa28f d49d800 3bef3fb db75012 3ce5824 2ec9293 75a25c7 d49d800 3bef3fb d49d800 3bef3fb 75a25c7 3bef3fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import os
import sys
os.system("pip install transformers==4.27.0")
os.system("pip install numpy==1.23")
from transformers import pipeline, WhisperModel, WhisperTokenizer, WhisperFeatureExtractor, AutoFeatureExtractor, AutoProcessor, WhisperConfig
os.system("pip install jiwer")
from jiwer import wer
os.system("pip install datasets[audio]")
from evaluate import evaluator
import evaluate
from datasets import load_dataset, Audio, disable_caching, set_caching_enabled
import gradio as gr
set_caching_enabled(False)
disable_caching()
huggingface_token = os.environ["huggingface_token"]
pipe = pipeline(model="mskov/whisper-small-esc50")
print(pipe)
dataset = load_dataset("mskov/miso_test", split="test").cast_column("audio", Audio(sampling_rate=16000))
print(dataset, "and at 0[audio][array] ", dataset[0]["audio"]["array"], type(dataset[0]["audio"]["array"]), "and at audio : ", dataset[0]["audio"])
def transcribe(audio):
text = pipe(audio)["text"]
return text
iface = gr.Interface(
fn=transcribe,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs="text",
title="Whisper Small Miso Test",
)
iface.launch()
# Evaluate the model
model.eval()
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
# Convert predicted token IDs back to text
predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)
# Get ground truth labels from the dataset
labels = dataset["audio"] # Replace "labels" with the appropriate key in your dataset
# Compute WER
wer_score = wer(labels, predicted_text)
# Print or return WER score
print(f"Word Error Rate (WER): {wer_score}")
'''
print("check check")
print(inputs)
input_features = inputs.input_features
decoder_input_ids = torch.tensor([[1, 1]]) * model.config.decoder_start_token_id
last_hidden_state = model(input_features, decoder_input_ids=decoder_input_ids).last_hidden_state
list(last_hidden_state.shape)
print(list(last_hidden_state.shape))
''' |