Update app.py
Browse files
app.py
CHANGED
@@ -7,90 +7,35 @@ os.system("pip install jiwer")
|
|
7 |
from jiwer import wer
|
8 |
os.system("pip install datasets[audio]")
|
9 |
from evaluate import evaluator, load
|
10 |
-
import
|
11 |
from datasets import load_dataset, Audio, disable_caching, set_caching_enabled
|
12 |
import gradio as gr
|
13 |
import torch
|
14 |
-
import
|
|
|
15 |
|
16 |
-
set_caching_enabled(False)
|
17 |
-
disable_caching()
|
18 |
|
19 |
-
huggingface_token = os.environ["huggingface_token"]
|
20 |
-
pipe = pipeline(model="mskov/whisper-small-esc50")
|
21 |
-
print(pipe)
|
22 |
processor = WhisperProcessor.from_pretrained("mskov/whisper-small-esc50")
|
23 |
-
|
24 |
|
25 |
-
# print(dataset, "and at 0[audio][array] ", dataset[0]["audio"]["array"], type(dataset[0]["audio"]["array"]), "and at audio : ", dataset[0]["audio"])
|
26 |
-
|
27 |
-
model = WhisperForConditionalGeneration.from_pretrained("mskov/whisper-small-esc50")
|
28 |
-
|
29 |
-
# Evaluate the model
|
30 |
-
# model.eval()
|
31 |
-
#print("model.eval ", model.eval())
|
32 |
-
|
33 |
-
|
34 |
-
# Remove brackets and extra spaces
|
35 |
def map_to_pred(batch):
|
36 |
audio = batch["audio"]
|
37 |
-
input_features = processor(audio["array"], sampling_rate=
|
38 |
batch["reference"] = processor.tokenizer._normalize(batch['category'])
|
39 |
|
40 |
with torch.no_grad():
|
41 |
predicted_ids = model.generate(input_features.to("cuda"))[0]
|
42 |
transcription = processor.decode(predicted_ids)
|
43 |
batch["prediction"] = processor.tokenizer._normalize(transcription)
|
|
|
44 |
return batch
|
45 |
|
46 |
-
result =
|
47 |
-
|
48 |
-
wer = load("wer")
|
49 |
-
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
|
50 |
-
|
51 |
-
'''
|
52 |
-
def map_to_pred(batch):
|
53 |
-
cleaned_transcription = re.sub(r'\[[^\]]+\]', '', batch['category']).strip()
|
54 |
-
print("cleaned transcript", cleaned_transcription)
|
55 |
-
cleaned_transcription = preprocess_transcription(batch['category'])
|
56 |
-
normalized_transcription = processor.tokenizer._normalize(cleaned_transcription)
|
57 |
-
|
58 |
-
audio = batch["audio"]
|
59 |
-
input_features = processor(audio["array"], sampling_rate=audio["sampling_rate"], return_tensors="pt").input_features
|
60 |
-
batch["reference"] = processor.tokenizer._normalize(batch['category'])
|
61 |
-
|
62 |
-
|
63 |
-
with torch.no_grad():
|
64 |
-
predicted_ids = model.generate(input_features)[0]
|
65 |
-
|
66 |
-
transcription = processor.decode(predicted_ids)
|
67 |
-
batch["prediction"] = processor.tokenizer._normalize(transcription)
|
68 |
-
return batch
|
69 |
-
|
70 |
-
result = dataset.map(map_to_pred)
|
71 |
|
72 |
wer = load("wer")
|
73 |
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
|
74 |
-
'''
|
75 |
-
'''
|
76 |
-
with torch.no_grad():
|
77 |
-
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
78 |
-
print("outputs ", outputs)
|
79 |
-
|
80 |
-
# Convert predicted token IDs back to text
|
81 |
-
predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)
|
82 |
|
83 |
-
# Get ground truth labels from the dataset
|
84 |
-
labels = dataset["audio"] # Replace "labels" with the appropriate key in your dataset
|
85 |
-
print("labels are ", labels)
|
86 |
|
87 |
-
# Compute WER
|
88 |
-
wer = load("wer")
|
89 |
-
wer_score = wer(labels, predicted_text)
|
90 |
-
|
91 |
-
# Print or return WER score
|
92 |
-
print(f"Word Error Rate (WER): {wer_score}")
|
93 |
-
'''
|
94 |
|
95 |
def transcribe(audio):
|
96 |
text = pipe(audio)["text"]
|
|
|
7 |
from jiwer import wer
|
8 |
os.system("pip install datasets[audio]")
|
9 |
from evaluate import evaluator, load
|
10 |
+
from transformers import AutoModelForSequenceClassification, pipeline, BertTokenizer, AutoTokenizer, GPT2Model
|
11 |
from datasets import load_dataset, Audio, disable_caching, set_caching_enabled
|
12 |
import gradio as gr
|
13 |
import torch
|
14 |
+
from datasets import load_dataset
|
15 |
+
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
16 |
|
|
|
|
|
17 |
|
|
|
|
|
|
|
18 |
processor = WhisperProcessor.from_pretrained("mskov/whisper-small-esc50")
|
19 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small-esc50").to("cuda")
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
def map_to_pred(batch):
|
22 |
audio = batch["audio"]
|
23 |
+
input_features = processor(audio["array"], sampling_rate=16000, return_tensors="pt").input_features
|
24 |
batch["reference"] = processor.tokenizer._normalize(batch['category'])
|
25 |
|
26 |
with torch.no_grad():
|
27 |
predicted_ids = model.generate(input_features.to("cuda"))[0]
|
28 |
transcription = processor.decode(predicted_ids)
|
29 |
batch["prediction"] = processor.tokenizer._normalize(transcription)
|
30 |
+
print(batch["prediction"])
|
31 |
return batch
|
32 |
|
33 |
+
result = librispeech_test_clean.map(map_to_pred)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
wer = load("wer")
|
36 |
print(100 * wer.compute(references=result["reference"], predictions=result["prediction"]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
def transcribe(audio):
|
41 |
text = pipe(audio)["text"]
|