mskov commited on
Commit
08ac921
Β·
1 Parent(s): 47837cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -46
app.py CHANGED
@@ -25,12 +25,13 @@ print(dataset, "and at 0[audio][array] ", dataset[0]["audio"]["array"], type(dat
25
 
26
  def transcribe(audio):
27
  text = pipe(audio)["text"]
28
- return text
 
29
 
30
  iface = gr.Interface(
31
  fn=transcribe,
32
  inputs=gr.Audio(source="microphone", type="filepath"),
33
- outputs="text",
34
  title="Whisper Small Miso Test",
35
  )
36
 
@@ -39,50 +40,7 @@ iface.launch()
39
  def evalWhisper(model, dataset):
40
  model.eval()
41
  print("model.eval ", model.eval())
42
-
43
- # Define a list to store the print statements
44
- log_texts = []
45
-
46
- with torch.no_grad():
47
- outputs = model(**input_data) # Define input_data appropriately
48
- print("outputs ", outputs)
49
- log_texts.append(f"outputs: {outputs}")
50
-
51
- # Convert predicted token IDs back to text
52
- predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)
53
-
54
- # Get ground truth labels from the dataset
55
- labels = dataset["audio"] # Replace "labels" with the appropriate key in your dataset
56
- print("labels are ", labels)
57
- log_texts.append(f"labels: {labels}")
58
-
59
- # Compute WER
60
- wer_score = wer(labels, predicted_text) # Define wer function
61
-
62
- # Print or return WER score
63
- wer_message = f"Word Error Rate (WER): {wer_score}"
64
- print(wer_message)
65
- log_texts.append(wer_message)
66
-
67
- print(log_texts)
68
-
69
- return log_texts
70
-
71
- # Call evalWhisper and get the log texts
72
- log_texts = evalWhisper(model, dataset)
73
 
74
- # Display the log texts using gr.Interface
75
- log_text = "\n".join(log_texts)
76
- log_interface = gr.Interface(
77
- fn=lambda: log_text,
78
- inputs=None,
79
- outputs="text",
80
- title="EvalWhisper Log",
81
- )
82
- log_interface.launch()
83
-
84
-
85
- '''
86
  # Evaluate the model
87
  model.eval()
88
  print("model.eval ", model.eval())
@@ -102,7 +60,7 @@ log_interface.launch()
102
 
103
  # Print or return WER score
104
  print(f"Word Error Rate (WER): {wer_score}")
105
- '''
106
  '''
107
  print("check check")
108
  print(inputs)
 
25
 
26
  def transcribe(audio):
27
  text = pipe(audio)["text"]
28
+ test = evalWhisper(model, dataset)
29
+ return text, test
30
 
31
  iface = gr.Interface(
32
  fn=transcribe,
33
  inputs=gr.Audio(source="microphone", type="filepath"),
34
+ outputs="text", "text"
35
  title="Whisper Small Miso Test",
36
  )
37
 
 
40
  def evalWhisper(model, dataset):
41
  model.eval()
42
  print("model.eval ", model.eval())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  # Evaluate the model
45
  model.eval()
46
  print("model.eval ", model.eval())
 
60
 
61
  # Print or return WER score
62
  print(f"Word Error Rate (WER): {wer_score}")
63
+
64
  '''
65
  print("check check")
66
  print(inputs)