Update app.py
Browse files
app.py
CHANGED
@@ -22,32 +22,29 @@ dataset = load_dataset("mskov/miso_test", split="test").cast_column("audio", Aud
|
|
22 |
|
23 |
print(dataset, "and at 0[audio][array] ", dataset[0]["audio"]["array"], type(dataset[0]["audio"]["array"]), "and at audio : ", dataset[0]["audio"])
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
model
|
34 |
-
print("
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
# Print or return WER score
|
50 |
-
print(f"Word Error Rate (WER): {wer_score}")
|
51 |
|
52 |
|
53 |
def transcribe(audio):
|
|
|
22 |
|
23 |
print(dataset, "and at 0[audio][array] ", dataset[0]["audio"]["array"], type(dataset[0]["audio"]["array"]), "and at audio : ", dataset[0]["audio"])
|
24 |
|
25 |
+
|
26 |
+
model.eval()
|
27 |
+
print("model.eval ", model.eval())
|
28 |
+
|
29 |
+
# Evaluate the model
|
30 |
+
model.eval()
|
31 |
+
print("model.eval ", model.eval())
|
32 |
+
with torch.no_grad():
|
33 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
34 |
+
print("outputs ", outputs)
|
35 |
+
|
36 |
+
# Convert predicted token IDs back to text
|
37 |
+
predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)
|
38 |
+
|
39 |
+
# Get ground truth labels from the dataset
|
40 |
+
labels = dataset["audio"] # Replace "labels" with the appropriate key in your dataset
|
41 |
+
print("labels are ", labels)
|
42 |
+
|
43 |
+
# Compute WER
|
44 |
+
wer_score = wer(labels, predicted_text)
|
45 |
+
|
46 |
+
# Print or return WER score
|
47 |
+
print(f"Word Error Rate (WER): {wer_score}")
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
def transcribe(audio):
|