Update app.py
Browse files
app.py
CHANGED
@@ -38,14 +38,17 @@ iface.launch()
|
|
38 |
|
39 |
# Evaluate the model
|
40 |
model.eval()
|
|
|
41 |
with torch.no_grad():
|
42 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
|
|
43 |
|
44 |
# Convert predicted token IDs back to text
|
45 |
predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)
|
46 |
|
47 |
# Get ground truth labels from the dataset
|
48 |
labels = dataset["audio"] # Replace "labels" with the appropriate key in your dataset
|
|
|
49 |
|
50 |
# Compute WER
|
51 |
wer_score = wer(labels, predicted_text)
|
|
|
38 |
|
39 |
# Evaluate the model
|
40 |
model.eval()
|
41 |
+
print("model.eval ", model.eval())
|
42 |
with torch.no_grad():
|
43 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
44 |
+
print("outputs ", outputs)
|
45 |
|
46 |
# Convert predicted token IDs back to text
|
47 |
predicted_text = tokenizer.batch_decode(outputs.logits.argmax(dim=-1), skip_special_tokens=True)
|
48 |
|
49 |
# Get ground truth labels from the dataset
|
50 |
labels = dataset["audio"] # Replace "labels" with the appropriate key in your dataset
|
51 |
+
print("labels are ", labels)
|
52 |
|
53 |
# Compute WER
|
54 |
wer_score = wer(labels, predicted_text)
|