Spaces:
Runtime error
Runtime error
Commit
·
1575629
1
Parent(s):
ed8df2e
Major changes to the app to allow prompt engineering (#2)
Browse files- Major changes to the app to allow prompt engineering (ad35daaa7d851793c89104eff8bf4912e5c2dc76)
Co-authored-by: Maddie <[email protected]>
app.py
CHANGED
|
@@ -1,14 +1,10 @@
|
|
| 1 |
|
| 2 |
'''
|
| 3 |
-
This script calls the
|
| 4 |
'''
|
| 5 |
import os
|
| 6 |
-
os.system("pip install --upgrade pip")
|
| 7 |
from pprint import pprint
|
| 8 |
-
os.system("pip install git+https://github.com/openai/whisper.git")
|
| 9 |
import sys
|
| 10 |
-
print("Sys: ", sys.executable)
|
| 11 |
-
os.system("pip install openai")
|
| 12 |
import openai
|
| 13 |
import gradio as gr
|
| 14 |
import whisper
|
|
@@ -17,68 +13,47 @@ import torch
|
|
| 17 |
from transformers import AutoModelForCausalLM
|
| 18 |
from transformers import AutoTokenizer
|
| 19 |
import time
|
| 20 |
-
# import streaming.py
|
| 21 |
-
# from next_word_prediction import GPT2
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
### /code snippet
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# get gpt2 model
|
| 33 |
-
#generator = pipeline('text-generation', model='gpt2')
|
| 34 |
-
|
| 35 |
-
# whisper model specification
|
| 36 |
-
model = whisper.load_model("tiny")
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
def inference(audio, state=""):
|
| 41 |
-
|
| 42 |
-
#time.sleep(2)
|
| 43 |
-
#text = p(audio)["text"]
|
| 44 |
-
#state += text + " "
|
| 45 |
-
# load audio data
|
| 46 |
-
audio = whisper.load_audio(audio)
|
| 47 |
-
# ensure sample is in correct format for inference
|
| 48 |
-
audio = whisper.pad_or_trim(audio)
|
| 49 |
-
|
| 50 |
-
# generate a log-mel spetrogram of the audio data
|
| 51 |
-
mel = whisper.log_mel_spectrogram(audio).to(model.device)
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
|
| 77 |
response = openai.Completion.create(
|
| 78 |
-
model=
|
| 79 |
-
#model="text-curie-001",
|
| 80 |
prompt=text,
|
| 81 |
-
temperature=
|
| 82 |
max_tokens=8,
|
| 83 |
n=5)
|
| 84 |
|
|
@@ -96,27 +71,17 @@ Transcript5: """
|
|
| 96 |
infers = list(map(lambda x: x.replace("\n", ""), temp))
|
| 97 |
#infered = list(map(lambda x: x.split(','), infers))
|
| 98 |
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
# result.text
|
| 103 |
-
#return getText, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
|
| 104 |
-
return result.text, state, infers
|
| 105 |
-
|
| 106 |
-
|
| 107 |
|
| 108 |
# get audio from microphone
|
| 109 |
-
|
| 110 |
gr.Interface(
|
| 111 |
-
|
| 112 |
-
inputs=[
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
live=True).launch()
|
| 122 |
-
|
|
|
|
| 1 |
|
| 2 |
'''
|
| 3 |
+
This script calls the model from openai api to predict the next few words.
|
| 4 |
'''
|
| 5 |
import os
|
|
|
|
| 6 |
from pprint import pprint
|
|
|
|
| 7 |
import sys
|
|
|
|
|
|
|
| 8 |
import openai
|
| 9 |
import gradio as gr
|
| 10 |
import whisper
|
|
|
|
| 13 |
from transformers import AutoModelForCausalLM
|
| 14 |
from transformers import AutoTokenizer
|
| 15 |
import time
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
EXAMPLE_PROMPT = """This is a tool for helping someone with memory issues remember the next word.
|
| 18 |
+
The predictions follow a few rules:
|
| 19 |
+
1) The predictions are suggestions of ways to continue the transcript as if someone forgot what the next word was.
|
| 20 |
+
2) The predictions do not repeat themselves.
|
| 21 |
+
3) The predictions focus on suggesting nouns, adjectives, and verbs.
|
| 22 |
+
4) The predictions are related to the context in the transcript.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
EXAMPLES:
|
| 25 |
+
Transcript: Tomorrow night we're going out to
|
| 26 |
+
Prediction: The Movies, A Restaurant, A Baseball Game, The Theater, A Party for a friend
|
| 27 |
+
Transcript: I would like to order a cheeseburger with a side of
|
| 28 |
+
Prediction: Frnech fries, Milkshake, Apple slices, Side salad, Extra katsup
|
| 29 |
+
Transcript: My friend Savanah is
|
| 30 |
+
Prediction: An elecrical engineer, A marine biologist, A classical musician
|
| 31 |
+
Transcript: I need to buy a birthday
|
| 32 |
+
Prediction: Present, Gift, Cake, Card
|
| 33 |
+
Transcript: """
|
| 34 |
+
|
| 35 |
+
# whisper model specification
|
| 36 |
+
asr_model = whisper.load_model("tiny")
|
| 37 |
+
|
| 38 |
+
openai.api_key = os.environ["Openai_APIkey"]
|
| 39 |
+
|
| 40 |
+
# Transcribe function
|
| 41 |
+
def transcribe(audio_file):
|
| 42 |
+
print("Transcribing")
|
| 43 |
+
transcription = asr_model.transcribe(audio_file)["text"]
|
| 44 |
+
return transcription
|
| 45 |
+
|
| 46 |
+
def debug_inference(audio, prompt, model, temperature, state=""):
|
| 47 |
+
# Transcribe with Whisper
|
| 48 |
+
print("The audio is:", audio)
|
| 49 |
+
transcript = transcribe(audio)
|
| 50 |
|
| 51 |
+
text = prompt + transcript + "\nPrediction: "
|
| 52 |
|
| 53 |
response = openai.Completion.create(
|
| 54 |
+
model=model,
|
|
|
|
| 55 |
prompt=text,
|
| 56 |
+
temperature=temperature,
|
| 57 |
max_tokens=8,
|
| 58 |
n=5)
|
| 59 |
|
|
|
|
| 71 |
infers = list(map(lambda x: x.replace("\n", ""), temp))
|
| 72 |
#infered = list(map(lambda x: x.split(','), infers))
|
| 73 |
|
| 74 |
+
return transcript, state, infers, text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
# get audio from microphone
|
|
|
|
| 77 |
gr.Interface(
|
| 78 |
+
fn=debug_inference,
|
| 79 |
+
inputs=[gr.inputs.Audio(source="microphone", type="filepath"),
|
| 80 |
+
gr.inputs.Textbox(lines=15, placeholder="Enter a prompt here"),
|
| 81 |
+
gr.inputs.Dropdown(["text-ada-001", "text-davinci-002", "text-davinci-003", "gpt-3.5-turbo"], label="Model"),
|
| 82 |
+
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.8, step=0.1, label="Temperature"),
|
| 83 |
+
"state"
|
| 84 |
+
],
|
| 85 |
+
outputs=["textbox","state","textbox", "textbox"],
|
| 86 |
+
# examples=[["example_in-the-mood-to-eat.m4a", EXAMPLE_PROMPT, "text-ada-001", 0.8, ""],["","","",0.9,""]],
|
| 87 |
+
live=False).launch()
|
|
|
|
|
|