|
import gradio as gr |
|
import os |
|
from groq import Groq |
|
|
|
|
|
import pandas as pd |
|
from datasets import Dataset |
|
|
|
|
|
test_dataset_df = pd.DataFrame(columns=['id', 'title', 'content', 'prechunk_id', 'postchunk_id', 'arxiv_id', 'references']) |
|
|
|
|
|
test_dataset_df = pd.concat([test_dataset_df, pd.DataFrame([{ |
|
'id': '1', |
|
'title': 'Best restaurants in queens', |
|
'content': 'I personally like to go to the J-Pan Chicken, they have fried chicken and amazing bubble tea.', |
|
'prechunk_id': '', |
|
'postchunk_id': '2', |
|
'arxiv_id': '2401.04088', |
|
'references': ['arXiv:9012.3456', 'arXiv:7890.1234'] |
|
}])], ignore_index=True) |
|
|
|
test_dataset_df = pd.concat([test_dataset_df, pd.DataFrame([{ |
|
'id': '2', |
|
'title': 'Best restaurants in queens', |
|
'content': 'if you like asian food, flushing is second to none.', |
|
'prechunk_id': '1', |
|
'postchunk_id': '3', |
|
'arxiv_id': '2401.04088', |
|
'references': ['arXiv:6543.2109', 'arXiv:3210.9876'] |
|
}])], ignore_index=True) |
|
|
|
test_dataset_df = pd.concat([test_dataset_df, pd.DataFrame([{ |
|
'id': '3', |
|
'title': 'Best restaurants in queens', |
|
'content': 'you have to try the ziti from ECC', |
|
'prechunk_id': '2', |
|
'postchunk_id': '', |
|
'arxiv_id': '2401.04088', |
|
'references': ['arXiv:1234.5678', 'arXiv:9012.3456'] |
|
}])], ignore_index=True) |
|
|
|
test_dataset_df = pd.concat([test_dataset_df, pd.DataFrame([{ |
|
'id': '6', |
|
'title': 'Best restaurants in queens', |
|
'content': 'theres a good halal cart on Wub Street, they give extra sticky creamy white sauce', |
|
'prechunk_id': '', |
|
'postchunk_id': '', |
|
'arxiv_id': '2401.04088', |
|
'references': ['arXiv:1234.5678', 'arXiv:9012.3456'] |
|
}])], ignore_index=True) |
|
|
|
test_dataset_df = pd.concat([test_dataset_df, pd.DataFrame([{ |
|
'id': '4', |
|
'title': 'Spending a saturday in queens; what to do?', |
|
'content': 'theres a hidden gem called The Lounge, you can play poker and blackjack and darts', |
|
'prechunk_id': '', |
|
'postchunk_id': '5', |
|
'arxiv_id': '2401.04088', |
|
'references': ['arXiv:1234.5678', 'arXiv:9012.3456'] |
|
}])], ignore_index=True) |
|
|
|
test_dataset_df = pd.concat([test_dataset_df, pd.DataFrame([{ |
|
'id': '5', |
|
'title': 'Spending a saturday in queens; what to do?', |
|
'content': 'if its a nice day, basketball at Non-non-Fiction Park is always fun', |
|
'prechunk_id': '', |
|
'postchunk_id': '6', |
|
'arxiv_id': '2401.04088', |
|
'references': ['arXiv:1234.5678', 'arXiv:9012.3456'] |
|
}])], ignore_index=True) |
|
|
|
test_dataset_df = pd.concat([test_dataset_df, pd.DataFrame([{ |
|
'id': '7', |
|
'title': 'visiting queens for the weekend, how to get around?', |
|
'content': 'nothing beats the subway, even with delays its the fastest option. you can transfer between the bus and subway with one swipe', |
|
'prechunk_id': '', |
|
'postchunk_id': '8', |
|
'arxiv_id': '2401.04088', |
|
'references': ['arXiv:1234.5678', 'arXiv:9012.3456'] |
|
}])], ignore_index=True) |
|
|
|
test_dataset_df = pd.concat([test_dataset_df, pd.DataFrame([{ |
|
'id': '8', |
|
'title': 'visiting queens for the weekend, how to get around?', |
|
'content': 'if youre going to the bar, its honestly worth ubering there. MTA while drunk isnt something id recommend.', |
|
'prechunk_id': '7', |
|
'postchunk_id': '', |
|
'arxiv_id': '2401.04088', |
|
'references': ['arXiv:1234.5678', 'arXiv:9012.3456'] |
|
}])], ignore_index=True) |
|
|
|
|
|
test_dataset = Dataset.from_pandas(test_dataset_df) |
|
|
|
data = test_dataset |
|
|
|
data = data.map(lambda x: { |
|
"id": x["id"], |
|
"metadata": { |
|
"title": x["title"], |
|
"content": x["content"], |
|
} |
|
}) |
|
|
|
data = data.remove_columns([ |
|
"title", "content", "prechunk_id", |
|
"postchunk_id", "arxiv_id", "references" |
|
]) |
|
|
|
from semantic_router.encoders import HuggingFaceEncoder |
|
|
|
encoder = HuggingFaceEncoder(name="dwzhu/e5-base-4k") |
|
|
|
embeds = encoder(["this is a test"]) |
|
dims = len(embeds[0]) |
|
|
|
|
|
|
|
import os |
|
import getpass |
|
from pinecone import Pinecone |
|
|
|
|
|
api_key = os.getenv("PINECONE_API_KEY") |
|
|
|
|
|
pc = Pinecone(api_key=api_key) |
|
|
|
from pinecone import ServerlessSpec |
|
|
|
spec = ServerlessSpec( |
|
cloud="aws", region="us-east-1" |
|
) |
|
|
|
import time |
|
|
|
index_name = "groq-llama-3-rag" |
|
existing_indexes = [ |
|
index_info["name"] for index_info in pc.list_indexes() |
|
] |
|
|
|
|
|
if index_name not in existing_indexes: |
|
|
|
pc.create_index( |
|
index_name, |
|
dimension=dims, |
|
metric='cosine', |
|
spec=spec |
|
) |
|
|
|
while not pc.describe_index(index_name).status['ready']: |
|
time.sleep(1) |
|
|
|
|
|
index = pc.Index(index_name) |
|
time.sleep(1) |
|
|
|
index.describe_index_stats() |
|
|
|
from tqdm.auto import tqdm |
|
|
|
batch_size = 2 |
|
|
|
for i in tqdm(range(0, len(data), batch_size)): |
|
|
|
i_end = min(len(data), i+batch_size) |
|
|
|
batch = data[i:i_end] |
|
|
|
chunks = [f'{x["title"]}: {x["content"]}' for x in batch["metadata"]] |
|
embeds = encoder(chunks) |
|
assert len(embeds) == (i_end-i) |
|
to_upsert = list(zip(batch["id"], embeds, batch["metadata"])) |
|
|
|
index.upsert(vectors=to_upsert) |
|
|
|
def get_docs(query: str, top_k: int) -> list[str]: |
|
|
|
xq = encoder([query]) |
|
|
|
res = index.query(vector=xq, top_k=top_k, include_metadata=True) |
|
|
|
docs = [x["metadata"]['content'] for x in res["matches"]] |
|
return docs |
|
|
|
from groq import Groq |
|
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY")) |
|
|
|
def generate(query: str, history): |
|
|
|
|
|
if not history: |
|
system_message = ( |
|
"You are a friendly and knowledgeable New Yorker who loves sharing recommendations about the city. " |
|
"You have lived in NYC for years and know both the famous tourist spots and hidden local gems. " |
|
"Your goal is to give recommendations tailored to what the user is asking for, whether they want iconic attractions " |
|
"or lesser-known spots loved by locals.\n\n" |
|
"Use the provided context to enhance your responses with real local insights, but only include details that are relevant " |
|
"to the user’s question. If the context provides useful recommendations that match what the user is asking for, use them. " |
|
"If the context is unrelated or does not fully answer the question, rely on your general NYC knowledge instead.\n\n" |
|
"Be specific when recommending places—mention neighborhoods, the atmosphere, and why someone might like a spot. " |
|
"Keep your tone warm, conversational, and engaging, like a close friend who genuinely enjoys sharing their city.\n\n" |
|
"CONTEXT:\n" |
|
"\n---\n".join(get_docs(query, top_k=5)) |
|
) |
|
messages = [ |
|
{"role": "system", "content": system_message}, |
|
] |
|
else: |
|
|
|
messages = [] |
|
for user_msg, bot_msg in history: |
|
messages.append({"role": "user", "content": user_msg}) |
|
messages.append({"role": "assistant", "content": bot_msg}) |
|
messages.append({"role": "assistant", "content": bot_msg}) |
|
system_message = ( |
|
"Here is additional context based on the newest query.\n\n" |
|
"CONTEXT:\n" |
|
"\n---\n".join(get_docs(query, top_k=5)) |
|
) |
|
messages.append({"role": "system", "content": system_message}) |
|
|
|
|
|
messages.append({"role": "user", "content": query}) |
|
|
|
|
|
chat_response = groq_client.chat.completions.create( |
|
model="llama3-70b-8192", |
|
messages=messages |
|
) |
|
return chat_response.choices[0].message.content |
|
|
|
|
|
|
|
custom_css = """ |
|
.gradio-container { |
|
background: transparent !important; |
|
} |
|
.chat-message { |
|
display: flex; |
|
align-items: center; |
|
margin-bottom: 10px; |
|
} |
|
.chat-message.user { |
|
justify-content: flex-end; |
|
} |
|
.chat-message.assistant { |
|
justify-content: flex-start; |
|
} |
|
.chat-bubble { |
|
padding: 10px 15px; |
|
border-radius: 20px; |
|
max-width: 70%; |
|
font-size: 16px; |
|
display: inline-block; |
|
} |
|
.chat-bubble.user { |
|
background-color: #007aff; |
|
color: white; |
|
border-bottom-right-radius: 5px; |
|
} |
|
.chat-bubble.assistant { |
|
background-color: #f0f0f0; |
|
color: black; |
|
border-bottom-left-radius: 5px; |
|
} |
|
.profile-pic { |
|
width: 40px; |
|
height: 40px; |
|
border-radius: 50%; |
|
margin: 0 10px; |
|
} |
|
""" |
|
|
|
|
|
demo = gr.ChatInterface(generate, css=custom_css) |
|
|
|
demo.launch() |
|
|