Upload praw.ipynb
Browse files- praw.ipynb +1152 -0
praw.ipynb
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU",
|
17 |
+
"widgets": {
|
18 |
+
"application/vnd.jupyter.widget-state+json": {
|
19 |
+
"6a04ce68a3fd4e8a85eab7ef95b460bf": {
|
20 |
+
"model_module": "@jupyter-widgets/controls",
|
21 |
+
"model_name": "HBoxModel",
|
22 |
+
"model_module_version": "1.5.0",
|
23 |
+
"state": {
|
24 |
+
"_dom_classes": [],
|
25 |
+
"_model_module": "@jupyter-widgets/controls",
|
26 |
+
"_model_module_version": "1.5.0",
|
27 |
+
"_model_name": "HBoxModel",
|
28 |
+
"_view_count": null,
|
29 |
+
"_view_module": "@jupyter-widgets/controls",
|
30 |
+
"_view_module_version": "1.5.0",
|
31 |
+
"_view_name": "HBoxView",
|
32 |
+
"box_style": "",
|
33 |
+
"children": [
|
34 |
+
"IPY_MODEL_8d334cffae1e43d3965926cf47915d87",
|
35 |
+
"IPY_MODEL_9c4084b9c03c4b7d9fb6351d67e51181",
|
36 |
+
"IPY_MODEL_1af047bf93ef458ab60dec0419e162c0"
|
37 |
+
],
|
38 |
+
"layout": "IPY_MODEL_ad9c688d0f8b4a94819008130cedbada"
|
39 |
+
}
|
40 |
+
},
|
41 |
+
"8d334cffae1e43d3965926cf47915d87": {
|
42 |
+
"model_module": "@jupyter-widgets/controls",
|
43 |
+
"model_name": "HTMLModel",
|
44 |
+
"model_module_version": "1.5.0",
|
45 |
+
"state": {
|
46 |
+
"_dom_classes": [],
|
47 |
+
"_model_module": "@jupyter-widgets/controls",
|
48 |
+
"_model_module_version": "1.5.0",
|
49 |
+
"_model_name": "HTMLModel",
|
50 |
+
"_view_count": null,
|
51 |
+
"_view_module": "@jupyter-widgets/controls",
|
52 |
+
"_view_module_version": "1.5.0",
|
53 |
+
"_view_name": "HTMLView",
|
54 |
+
"description": "",
|
55 |
+
"description_tooltip": null,
|
56 |
+
"layout": "IPY_MODEL_7fd0861c22a94f639cae337d38815752",
|
57 |
+
"placeholder": "",
|
58 |
+
"style": "IPY_MODEL_13d05e0960ac4220a3874135a233b5b2",
|
59 |
+
"value": "100%"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"9c4084b9c03c4b7d9fb6351d67e51181": {
|
63 |
+
"model_module": "@jupyter-widgets/controls",
|
64 |
+
"model_name": "FloatProgressModel",
|
65 |
+
"model_module_version": "1.5.0",
|
66 |
+
"state": {
|
67 |
+
"_dom_classes": [],
|
68 |
+
"_model_module": "@jupyter-widgets/controls",
|
69 |
+
"_model_module_version": "1.5.0",
|
70 |
+
"_model_name": "FloatProgressModel",
|
71 |
+
"_view_count": null,
|
72 |
+
"_view_module": "@jupyter-widgets/controls",
|
73 |
+
"_view_module_version": "1.5.0",
|
74 |
+
"_view_name": "ProgressView",
|
75 |
+
"bar_style": "success",
|
76 |
+
"description": "",
|
77 |
+
"description_tooltip": null,
|
78 |
+
"layout": "IPY_MODEL_46b40383a6ce4ca2ae35faa715c87f87",
|
79 |
+
"max": 7,
|
80 |
+
"min": 0,
|
81 |
+
"orientation": "horizontal",
|
82 |
+
"style": "IPY_MODEL_2e2ec919da9240e48f7f85464bd8376b",
|
83 |
+
"value": 7
|
84 |
+
}
|
85 |
+
},
|
86 |
+
"1af047bf93ef458ab60dec0419e162c0": {
|
87 |
+
"model_module": "@jupyter-widgets/controls",
|
88 |
+
"model_name": "HTMLModel",
|
89 |
+
"model_module_version": "1.5.0",
|
90 |
+
"state": {
|
91 |
+
"_dom_classes": [],
|
92 |
+
"_model_module": "@jupyter-widgets/controls",
|
93 |
+
"_model_module_version": "1.5.0",
|
94 |
+
"_model_name": "HTMLModel",
|
95 |
+
"_view_count": null,
|
96 |
+
"_view_module": "@jupyter-widgets/controls",
|
97 |
+
"_view_module_version": "1.5.0",
|
98 |
+
"_view_name": "HTMLView",
|
99 |
+
"description": "",
|
100 |
+
"description_tooltip": null,
|
101 |
+
"layout": "IPY_MODEL_190b28c62a7548599de3cf1fe701c9e3",
|
102 |
+
"placeholder": "",
|
103 |
+
"style": "IPY_MODEL_50c3e507389643ceaf02095a60d63045",
|
104 |
+
"value": " 7/7 [00:32<00:00, 4.32s/it]"
|
105 |
+
}
|
106 |
+
},
|
107 |
+
"ad9c688d0f8b4a94819008130cedbada": {
|
108 |
+
"model_module": "@jupyter-widgets/base",
|
109 |
+
"model_name": "LayoutModel",
|
110 |
+
"model_module_version": "1.2.0",
|
111 |
+
"state": {
|
112 |
+
"_model_module": "@jupyter-widgets/base",
|
113 |
+
"_model_module_version": "1.2.0",
|
114 |
+
"_model_name": "LayoutModel",
|
115 |
+
"_view_count": null,
|
116 |
+
"_view_module": "@jupyter-widgets/base",
|
117 |
+
"_view_module_version": "1.2.0",
|
118 |
+
"_view_name": "LayoutView",
|
119 |
+
"align_content": null,
|
120 |
+
"align_items": null,
|
121 |
+
"align_self": null,
|
122 |
+
"border": null,
|
123 |
+
"bottom": null,
|
124 |
+
"display": null,
|
125 |
+
"flex": null,
|
126 |
+
"flex_flow": null,
|
127 |
+
"grid_area": null,
|
128 |
+
"grid_auto_columns": null,
|
129 |
+
"grid_auto_flow": null,
|
130 |
+
"grid_auto_rows": null,
|
131 |
+
"grid_column": null,
|
132 |
+
"grid_gap": null,
|
133 |
+
"grid_row": null,
|
134 |
+
"grid_template_areas": null,
|
135 |
+
"grid_template_columns": null,
|
136 |
+
"grid_template_rows": null,
|
137 |
+
"height": null,
|
138 |
+
"justify_content": null,
|
139 |
+
"justify_items": null,
|
140 |
+
"left": null,
|
141 |
+
"margin": null,
|
142 |
+
"max_height": null,
|
143 |
+
"max_width": null,
|
144 |
+
"min_height": null,
|
145 |
+
"min_width": null,
|
146 |
+
"object_fit": null,
|
147 |
+
"object_position": null,
|
148 |
+
"order": null,
|
149 |
+
"overflow": null,
|
150 |
+
"overflow_x": null,
|
151 |
+
"overflow_y": null,
|
152 |
+
"padding": null,
|
153 |
+
"right": null,
|
154 |
+
"top": null,
|
155 |
+
"visibility": null,
|
156 |
+
"width": null
|
157 |
+
}
|
158 |
+
},
|
159 |
+
"7fd0861c22a94f639cae337d38815752": {
|
160 |
+
"model_module": "@jupyter-widgets/base",
|
161 |
+
"model_name": "LayoutModel",
|
162 |
+
"model_module_version": "1.2.0",
|
163 |
+
"state": {
|
164 |
+
"_model_module": "@jupyter-widgets/base",
|
165 |
+
"_model_module_version": "1.2.0",
|
166 |
+
"_model_name": "LayoutModel",
|
167 |
+
"_view_count": null,
|
168 |
+
"_view_module": "@jupyter-widgets/base",
|
169 |
+
"_view_module_version": "1.2.0",
|
170 |
+
"_view_name": "LayoutView",
|
171 |
+
"align_content": null,
|
172 |
+
"align_items": null,
|
173 |
+
"align_self": null,
|
174 |
+
"border": null,
|
175 |
+
"bottom": null,
|
176 |
+
"display": null,
|
177 |
+
"flex": null,
|
178 |
+
"flex_flow": null,
|
179 |
+
"grid_area": null,
|
180 |
+
"grid_auto_columns": null,
|
181 |
+
"grid_auto_flow": null,
|
182 |
+
"grid_auto_rows": null,
|
183 |
+
"grid_column": null,
|
184 |
+
"grid_gap": null,
|
185 |
+
"grid_row": null,
|
186 |
+
"grid_template_areas": null,
|
187 |
+
"grid_template_columns": null,
|
188 |
+
"grid_template_rows": null,
|
189 |
+
"height": null,
|
190 |
+
"justify_content": null,
|
191 |
+
"justify_items": null,
|
192 |
+
"left": null,
|
193 |
+
"margin": null,
|
194 |
+
"max_height": null,
|
195 |
+
"max_width": null,
|
196 |
+
"min_height": null,
|
197 |
+
"min_width": null,
|
198 |
+
"object_fit": null,
|
199 |
+
"object_position": null,
|
200 |
+
"order": null,
|
201 |
+
"overflow": null,
|
202 |
+
"overflow_x": null,
|
203 |
+
"overflow_y": null,
|
204 |
+
"padding": null,
|
205 |
+
"right": null,
|
206 |
+
"top": null,
|
207 |
+
"visibility": null,
|
208 |
+
"width": null
|
209 |
+
}
|
210 |
+
},
|
211 |
+
"13d05e0960ac4220a3874135a233b5b2": {
|
212 |
+
"model_module": "@jupyter-widgets/controls",
|
213 |
+
"model_name": "DescriptionStyleModel",
|
214 |
+
"model_module_version": "1.5.0",
|
215 |
+
"state": {
|
216 |
+
"_model_module": "@jupyter-widgets/controls",
|
217 |
+
"_model_module_version": "1.5.0",
|
218 |
+
"_model_name": "DescriptionStyleModel",
|
219 |
+
"_view_count": null,
|
220 |
+
"_view_module": "@jupyter-widgets/base",
|
221 |
+
"_view_module_version": "1.2.0",
|
222 |
+
"_view_name": "StyleView",
|
223 |
+
"description_width": ""
|
224 |
+
}
|
225 |
+
},
|
226 |
+
"46b40383a6ce4ca2ae35faa715c87f87": {
|
227 |
+
"model_module": "@jupyter-widgets/base",
|
228 |
+
"model_name": "LayoutModel",
|
229 |
+
"model_module_version": "1.2.0",
|
230 |
+
"state": {
|
231 |
+
"_model_module": "@jupyter-widgets/base",
|
232 |
+
"_model_module_version": "1.2.0",
|
233 |
+
"_model_name": "LayoutModel",
|
234 |
+
"_view_count": null,
|
235 |
+
"_view_module": "@jupyter-widgets/base",
|
236 |
+
"_view_module_version": "1.2.0",
|
237 |
+
"_view_name": "LayoutView",
|
238 |
+
"align_content": null,
|
239 |
+
"align_items": null,
|
240 |
+
"align_self": null,
|
241 |
+
"border": null,
|
242 |
+
"bottom": null,
|
243 |
+
"display": null,
|
244 |
+
"flex": null,
|
245 |
+
"flex_flow": null,
|
246 |
+
"grid_area": null,
|
247 |
+
"grid_auto_columns": null,
|
248 |
+
"grid_auto_flow": null,
|
249 |
+
"grid_auto_rows": null,
|
250 |
+
"grid_column": null,
|
251 |
+
"grid_gap": null,
|
252 |
+
"grid_row": null,
|
253 |
+
"grid_template_areas": null,
|
254 |
+
"grid_template_columns": null,
|
255 |
+
"grid_template_rows": null,
|
256 |
+
"height": null,
|
257 |
+
"justify_content": null,
|
258 |
+
"justify_items": null,
|
259 |
+
"left": null,
|
260 |
+
"margin": null,
|
261 |
+
"max_height": null,
|
262 |
+
"max_width": null,
|
263 |
+
"min_height": null,
|
264 |
+
"min_width": null,
|
265 |
+
"object_fit": null,
|
266 |
+
"object_position": null,
|
267 |
+
"order": null,
|
268 |
+
"overflow": null,
|
269 |
+
"overflow_x": null,
|
270 |
+
"overflow_y": null,
|
271 |
+
"padding": null,
|
272 |
+
"right": null,
|
273 |
+
"top": null,
|
274 |
+
"visibility": null,
|
275 |
+
"width": null
|
276 |
+
}
|
277 |
+
},
|
278 |
+
"2e2ec919da9240e48f7f85464bd8376b": {
|
279 |
+
"model_module": "@jupyter-widgets/controls",
|
280 |
+
"model_name": "ProgressStyleModel",
|
281 |
+
"model_module_version": "1.5.0",
|
282 |
+
"state": {
|
283 |
+
"_model_module": "@jupyter-widgets/controls",
|
284 |
+
"_model_module_version": "1.5.0",
|
285 |
+
"_model_name": "ProgressStyleModel",
|
286 |
+
"_view_count": null,
|
287 |
+
"_view_module": "@jupyter-widgets/base",
|
288 |
+
"_view_module_version": "1.2.0",
|
289 |
+
"_view_name": "StyleView",
|
290 |
+
"bar_color": null,
|
291 |
+
"description_width": ""
|
292 |
+
}
|
293 |
+
},
|
294 |
+
"190b28c62a7548599de3cf1fe701c9e3": {
|
295 |
+
"model_module": "@jupyter-widgets/base",
|
296 |
+
"model_name": "LayoutModel",
|
297 |
+
"model_module_version": "1.2.0",
|
298 |
+
"state": {
|
299 |
+
"_model_module": "@jupyter-widgets/base",
|
300 |
+
"_model_module_version": "1.2.0",
|
301 |
+
"_model_name": "LayoutModel",
|
302 |
+
"_view_count": null,
|
303 |
+
"_view_module": "@jupyter-widgets/base",
|
304 |
+
"_view_module_version": "1.2.0",
|
305 |
+
"_view_name": "LayoutView",
|
306 |
+
"align_content": null,
|
307 |
+
"align_items": null,
|
308 |
+
"align_self": null,
|
309 |
+
"border": null,
|
310 |
+
"bottom": null,
|
311 |
+
"display": null,
|
312 |
+
"flex": null,
|
313 |
+
"flex_flow": null,
|
314 |
+
"grid_area": null,
|
315 |
+
"grid_auto_columns": null,
|
316 |
+
"grid_auto_flow": null,
|
317 |
+
"grid_auto_rows": null,
|
318 |
+
"grid_column": null,
|
319 |
+
"grid_gap": null,
|
320 |
+
"grid_row": null,
|
321 |
+
"grid_template_areas": null,
|
322 |
+
"grid_template_columns": null,
|
323 |
+
"grid_template_rows": null,
|
324 |
+
"height": null,
|
325 |
+
"justify_content": null,
|
326 |
+
"justify_items": null,
|
327 |
+
"left": null,
|
328 |
+
"margin": null,
|
329 |
+
"max_height": null,
|
330 |
+
"max_width": null,
|
331 |
+
"min_height": null,
|
332 |
+
"min_width": null,
|
333 |
+
"object_fit": null,
|
334 |
+
"object_position": null,
|
335 |
+
"order": null,
|
336 |
+
"overflow": null,
|
337 |
+
"overflow_x": null,
|
338 |
+
"overflow_y": null,
|
339 |
+
"padding": null,
|
340 |
+
"right": null,
|
341 |
+
"top": null,
|
342 |
+
"visibility": null,
|
343 |
+
"width": null
|
344 |
+
}
|
345 |
+
},
|
346 |
+
"50c3e507389643ceaf02095a60d63045": {
|
347 |
+
"model_module": "@jupyter-widgets/controls",
|
348 |
+
"model_name": "DescriptionStyleModel",
|
349 |
+
"model_module_version": "1.5.0",
|
350 |
+
"state": {
|
351 |
+
"_model_module": "@jupyter-widgets/controls",
|
352 |
+
"_model_module_version": "1.5.0",
|
353 |
+
"_model_name": "DescriptionStyleModel",
|
354 |
+
"_view_count": null,
|
355 |
+
"_view_module": "@jupyter-widgets/base",
|
356 |
+
"_view_module_version": "1.2.0",
|
357 |
+
"_view_name": "StyleView",
|
358 |
+
"description_width": ""
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"d67f5fd0199a41bb949a974fbd3ffab2": {
|
362 |
+
"model_module": "@jupyter-widgets/controls",
|
363 |
+
"model_name": "HBoxModel",
|
364 |
+
"model_module_version": "1.5.0",
|
365 |
+
"state": {
|
366 |
+
"_dom_classes": [],
|
367 |
+
"_model_module": "@jupyter-widgets/controls",
|
368 |
+
"_model_module_version": "1.5.0",
|
369 |
+
"_model_name": "HBoxModel",
|
370 |
+
"_view_count": null,
|
371 |
+
"_view_module": "@jupyter-widgets/controls",
|
372 |
+
"_view_module_version": "1.5.0",
|
373 |
+
"_view_name": "HBoxView",
|
374 |
+
"box_style": "",
|
375 |
+
"children": [
|
376 |
+
"IPY_MODEL_2113f2a1b6ab40fd8232aeec27a18443",
|
377 |
+
"IPY_MODEL_a9d7ad46be6747ffbab4b2c8614ddce8",
|
378 |
+
"IPY_MODEL_a6ff8a0f04944a7ea4c310d21d6ffd0b"
|
379 |
+
],
|
380 |
+
"layout": "IPY_MODEL_05325e3c286d49d1a2f4b07ca83f4932"
|
381 |
+
}
|
382 |
+
},
|
383 |
+
"2113f2a1b6ab40fd8232aeec27a18443": {
|
384 |
+
"model_module": "@jupyter-widgets/controls",
|
385 |
+
"model_name": "HTMLModel",
|
386 |
+
"model_module_version": "1.5.0",
|
387 |
+
"state": {
|
388 |
+
"_dom_classes": [],
|
389 |
+
"_model_module": "@jupyter-widgets/controls",
|
390 |
+
"_model_module_version": "1.5.0",
|
391 |
+
"_model_name": "HTMLModel",
|
392 |
+
"_view_count": null,
|
393 |
+
"_view_module": "@jupyter-widgets/controls",
|
394 |
+
"_view_module_version": "1.5.0",
|
395 |
+
"_view_name": "HTMLView",
|
396 |
+
"description": "",
|
397 |
+
"description_tooltip": null,
|
398 |
+
"layout": "IPY_MODEL_fbd9cc97dc474c7d99a7e2a9c4c9e598",
|
399 |
+
"placeholder": "",
|
400 |
+
"style": "IPY_MODEL_1ac94815802c4d60b605e5a6bf375349",
|
401 |
+
"value": "Map: 100%"
|
402 |
+
}
|
403 |
+
},
|
404 |
+
"a9d7ad46be6747ffbab4b2c8614ddce8": {
|
405 |
+
"model_module": "@jupyter-widgets/controls",
|
406 |
+
"model_name": "FloatProgressModel",
|
407 |
+
"model_module_version": "1.5.0",
|
408 |
+
"state": {
|
409 |
+
"_dom_classes": [],
|
410 |
+
"_model_module": "@jupyter-widgets/controls",
|
411 |
+
"_model_module_version": "1.5.0",
|
412 |
+
"_model_name": "FloatProgressModel",
|
413 |
+
"_view_count": null,
|
414 |
+
"_view_module": "@jupyter-widgets/controls",
|
415 |
+
"_view_module_version": "1.5.0",
|
416 |
+
"_view_name": "ProgressView",
|
417 |
+
"bar_style": "success",
|
418 |
+
"description": "",
|
419 |
+
"description_tooltip": null,
|
420 |
+
"layout": "IPY_MODEL_bf3fd415224e4c379013624bf4701a80",
|
421 |
+
"max": 10,
|
422 |
+
"min": 0,
|
423 |
+
"orientation": "horizontal",
|
424 |
+
"style": "IPY_MODEL_4d35d12cf5774b3ba9958bced27b2444",
|
425 |
+
"value": 10
|
426 |
+
}
|
427 |
+
},
|
428 |
+
"a6ff8a0f04944a7ea4c310d21d6ffd0b": {
|
429 |
+
"model_module": "@jupyter-widgets/controls",
|
430 |
+
"model_name": "HTMLModel",
|
431 |
+
"model_module_version": "1.5.0",
|
432 |
+
"state": {
|
433 |
+
"_dom_classes": [],
|
434 |
+
"_model_module": "@jupyter-widgets/controls",
|
435 |
+
"_model_module_version": "1.5.0",
|
436 |
+
"_model_name": "HTMLModel",
|
437 |
+
"_view_count": null,
|
438 |
+
"_view_module": "@jupyter-widgets/controls",
|
439 |
+
"_view_module_version": "1.5.0",
|
440 |
+
"_view_name": "HTMLView",
|
441 |
+
"description": "",
|
442 |
+
"description_tooltip": null,
|
443 |
+
"layout": "IPY_MODEL_c2fd01b3bf494abdbae47574a8cdb367",
|
444 |
+
"placeholder": "",
|
445 |
+
"style": "IPY_MODEL_01248f0d5d33408b8038c1aefcf52888",
|
446 |
+
"value": " 10/10 [00:00<00:00, 290.58 examples/s]"
|
447 |
+
}
|
448 |
+
},
|
449 |
+
"05325e3c286d49d1a2f4b07ca83f4932": {
|
450 |
+
"model_module": "@jupyter-widgets/base",
|
451 |
+
"model_name": "LayoutModel",
|
452 |
+
"model_module_version": "1.2.0",
|
453 |
+
"state": {
|
454 |
+
"_model_module": "@jupyter-widgets/base",
|
455 |
+
"_model_module_version": "1.2.0",
|
456 |
+
"_model_name": "LayoutModel",
|
457 |
+
"_view_count": null,
|
458 |
+
"_view_module": "@jupyter-widgets/base",
|
459 |
+
"_view_module_version": "1.2.0",
|
460 |
+
"_view_name": "LayoutView",
|
461 |
+
"align_content": null,
|
462 |
+
"align_items": null,
|
463 |
+
"align_self": null,
|
464 |
+
"border": null,
|
465 |
+
"bottom": null,
|
466 |
+
"display": null,
|
467 |
+
"flex": null,
|
468 |
+
"flex_flow": null,
|
469 |
+
"grid_area": null,
|
470 |
+
"grid_auto_columns": null,
|
471 |
+
"grid_auto_flow": null,
|
472 |
+
"grid_auto_rows": null,
|
473 |
+
"grid_column": null,
|
474 |
+
"grid_gap": null,
|
475 |
+
"grid_row": null,
|
476 |
+
"grid_template_areas": null,
|
477 |
+
"grid_template_columns": null,
|
478 |
+
"grid_template_rows": null,
|
479 |
+
"height": null,
|
480 |
+
"justify_content": null,
|
481 |
+
"justify_items": null,
|
482 |
+
"left": null,
|
483 |
+
"margin": null,
|
484 |
+
"max_height": null,
|
485 |
+
"max_width": null,
|
486 |
+
"min_height": null,
|
487 |
+
"min_width": null,
|
488 |
+
"object_fit": null,
|
489 |
+
"object_position": null,
|
490 |
+
"order": null,
|
491 |
+
"overflow": null,
|
492 |
+
"overflow_x": null,
|
493 |
+
"overflow_y": null,
|
494 |
+
"padding": null,
|
495 |
+
"right": null,
|
496 |
+
"top": null,
|
497 |
+
"visibility": null,
|
498 |
+
"width": null
|
499 |
+
}
|
500 |
+
},
|
501 |
+
"fbd9cc97dc474c7d99a7e2a9c4c9e598": {
|
502 |
+
"model_module": "@jupyter-widgets/base",
|
503 |
+
"model_name": "LayoutModel",
|
504 |
+
"model_module_version": "1.2.0",
|
505 |
+
"state": {
|
506 |
+
"_model_module": "@jupyter-widgets/base",
|
507 |
+
"_model_module_version": "1.2.0",
|
508 |
+
"_model_name": "LayoutModel",
|
509 |
+
"_view_count": null,
|
510 |
+
"_view_module": "@jupyter-widgets/base",
|
511 |
+
"_view_module_version": "1.2.0",
|
512 |
+
"_view_name": "LayoutView",
|
513 |
+
"align_content": null,
|
514 |
+
"align_items": null,
|
515 |
+
"align_self": null,
|
516 |
+
"border": null,
|
517 |
+
"bottom": null,
|
518 |
+
"display": null,
|
519 |
+
"flex": null,
|
520 |
+
"flex_flow": null,
|
521 |
+
"grid_area": null,
|
522 |
+
"grid_auto_columns": null,
|
523 |
+
"grid_auto_flow": null,
|
524 |
+
"grid_auto_rows": null,
|
525 |
+
"grid_column": null,
|
526 |
+
"grid_gap": null,
|
527 |
+
"grid_row": null,
|
528 |
+
"grid_template_areas": null,
|
529 |
+
"grid_template_columns": null,
|
530 |
+
"grid_template_rows": null,
|
531 |
+
"height": null,
|
532 |
+
"justify_content": null,
|
533 |
+
"justify_items": null,
|
534 |
+
"left": null,
|
535 |
+
"margin": null,
|
536 |
+
"max_height": null,
|
537 |
+
"max_width": null,
|
538 |
+
"min_height": null,
|
539 |
+
"min_width": null,
|
540 |
+
"object_fit": null,
|
541 |
+
"object_position": null,
|
542 |
+
"order": null,
|
543 |
+
"overflow": null,
|
544 |
+
"overflow_x": null,
|
545 |
+
"overflow_y": null,
|
546 |
+
"padding": null,
|
547 |
+
"right": null,
|
548 |
+
"top": null,
|
549 |
+
"visibility": null,
|
550 |
+
"width": null
|
551 |
+
}
|
552 |
+
},
|
553 |
+
"1ac94815802c4d60b605e5a6bf375349": {
|
554 |
+
"model_module": "@jupyter-widgets/controls",
|
555 |
+
"model_name": "DescriptionStyleModel",
|
556 |
+
"model_module_version": "1.5.0",
|
557 |
+
"state": {
|
558 |
+
"_model_module": "@jupyter-widgets/controls",
|
559 |
+
"_model_module_version": "1.5.0",
|
560 |
+
"_model_name": "DescriptionStyleModel",
|
561 |
+
"_view_count": null,
|
562 |
+
"_view_module": "@jupyter-widgets/base",
|
563 |
+
"_view_module_version": "1.2.0",
|
564 |
+
"_view_name": "StyleView",
|
565 |
+
"description_width": ""
|
566 |
+
}
|
567 |
+
},
|
568 |
+
"bf3fd415224e4c379013624bf4701a80": {
|
569 |
+
"model_module": "@jupyter-widgets/base",
|
570 |
+
"model_name": "LayoutModel",
|
571 |
+
"model_module_version": "1.2.0",
|
572 |
+
"state": {
|
573 |
+
"_model_module": "@jupyter-widgets/base",
|
574 |
+
"_model_module_version": "1.2.0",
|
575 |
+
"_model_name": "LayoutModel",
|
576 |
+
"_view_count": null,
|
577 |
+
"_view_module": "@jupyter-widgets/base",
|
578 |
+
"_view_module_version": "1.2.0",
|
579 |
+
"_view_name": "LayoutView",
|
580 |
+
"align_content": null,
|
581 |
+
"align_items": null,
|
582 |
+
"align_self": null,
|
583 |
+
"border": null,
|
584 |
+
"bottom": null,
|
585 |
+
"display": null,
|
586 |
+
"flex": null,
|
587 |
+
"flex_flow": null,
|
588 |
+
"grid_area": null,
|
589 |
+
"grid_auto_columns": null,
|
590 |
+
"grid_auto_flow": null,
|
591 |
+
"grid_auto_rows": null,
|
592 |
+
"grid_column": null,
|
593 |
+
"grid_gap": null,
|
594 |
+
"grid_row": null,
|
595 |
+
"grid_template_areas": null,
|
596 |
+
"grid_template_columns": null,
|
597 |
+
"grid_template_rows": null,
|
598 |
+
"height": null,
|
599 |
+
"justify_content": null,
|
600 |
+
"justify_items": null,
|
601 |
+
"left": null,
|
602 |
+
"margin": null,
|
603 |
+
"max_height": null,
|
604 |
+
"max_width": null,
|
605 |
+
"min_height": null,
|
606 |
+
"min_width": null,
|
607 |
+
"object_fit": null,
|
608 |
+
"object_position": null,
|
609 |
+
"order": null,
|
610 |
+
"overflow": null,
|
611 |
+
"overflow_x": null,
|
612 |
+
"overflow_y": null,
|
613 |
+
"padding": null,
|
614 |
+
"right": null,
|
615 |
+
"top": null,
|
616 |
+
"visibility": null,
|
617 |
+
"width": null
|
618 |
+
}
|
619 |
+
},
|
620 |
+
"4d35d12cf5774b3ba9958bced27b2444": {
|
621 |
+
"model_module": "@jupyter-widgets/controls",
|
622 |
+
"model_name": "ProgressStyleModel",
|
623 |
+
"model_module_version": "1.5.0",
|
624 |
+
"state": {
|
625 |
+
"_model_module": "@jupyter-widgets/controls",
|
626 |
+
"_model_module_version": "1.5.0",
|
627 |
+
"_model_name": "ProgressStyleModel",
|
628 |
+
"_view_count": null,
|
629 |
+
"_view_module": "@jupyter-widgets/base",
|
630 |
+
"_view_module_version": "1.2.0",
|
631 |
+
"_view_name": "StyleView",
|
632 |
+
"bar_color": null,
|
633 |
+
"description_width": ""
|
634 |
+
}
|
635 |
+
},
|
636 |
+
"c2fd01b3bf494abdbae47574a8cdb367": {
|
637 |
+
"model_module": "@jupyter-widgets/base",
|
638 |
+
"model_name": "LayoutModel",
|
639 |
+
"model_module_version": "1.2.0",
|
640 |
+
"state": {
|
641 |
+
"_model_module": "@jupyter-widgets/base",
|
642 |
+
"_model_module_version": "1.2.0",
|
643 |
+
"_model_name": "LayoutModel",
|
644 |
+
"_view_count": null,
|
645 |
+
"_view_module": "@jupyter-widgets/base",
|
646 |
+
"_view_module_version": "1.2.0",
|
647 |
+
"_view_name": "LayoutView",
|
648 |
+
"align_content": null,
|
649 |
+
"align_items": null,
|
650 |
+
"align_self": null,
|
651 |
+
"border": null,
|
652 |
+
"bottom": null,
|
653 |
+
"display": null,
|
654 |
+
"flex": null,
|
655 |
+
"flex_flow": null,
|
656 |
+
"grid_area": null,
|
657 |
+
"grid_auto_columns": null,
|
658 |
+
"grid_auto_flow": null,
|
659 |
+
"grid_auto_rows": null,
|
660 |
+
"grid_column": null,
|
661 |
+
"grid_gap": null,
|
662 |
+
"grid_row": null,
|
663 |
+
"grid_template_areas": null,
|
664 |
+
"grid_template_columns": null,
|
665 |
+
"grid_template_rows": null,
|
666 |
+
"height": null,
|
667 |
+
"justify_content": null,
|
668 |
+
"justify_items": null,
|
669 |
+
"left": null,
|
670 |
+
"margin": null,
|
671 |
+
"max_height": null,
|
672 |
+
"max_width": null,
|
673 |
+
"min_height": null,
|
674 |
+
"min_width": null,
|
675 |
+
"object_fit": null,
|
676 |
+
"object_position": null,
|
677 |
+
"order": null,
|
678 |
+
"overflow": null,
|
679 |
+
"overflow_x": null,
|
680 |
+
"overflow_y": null,
|
681 |
+
"padding": null,
|
682 |
+
"right": null,
|
683 |
+
"top": null,
|
684 |
+
"visibility": null,
|
685 |
+
"width": null
|
686 |
+
}
|
687 |
+
},
|
688 |
+
"01248f0d5d33408b8038c1aefcf52888": {
|
689 |
+
"model_module": "@jupyter-widgets/controls",
|
690 |
+
"model_name": "DescriptionStyleModel",
|
691 |
+
"model_module_version": "1.5.0",
|
692 |
+
"state": {
|
693 |
+
"_model_module": "@jupyter-widgets/controls",
|
694 |
+
"_model_module_version": "1.5.0",
|
695 |
+
"_model_name": "DescriptionStyleModel",
|
696 |
+
"_view_count": null,
|
697 |
+
"_view_module": "@jupyter-widgets/base",
|
698 |
+
"_view_module_version": "1.2.0",
|
699 |
+
"_view_name": "StyleView",
|
700 |
+
"description_width": ""
|
701 |
+
}
|
702 |
+
}
|
703 |
+
}
|
704 |
+
}
|
705 |
+
},
|
706 |
+
"cells": [
|
707 |
+
{
|
708 |
+
"cell_type": "code",
|
709 |
+
"execution_count": null,
|
710 |
+
"metadata": {
|
711 |
+
"id": "BiY1TYKVyZnF"
|
712 |
+
},
|
713 |
+
"outputs": [],
|
714 |
+
"source": [
|
715 |
+
"!pip install praw\n",
|
716 |
+
"!pip install pinecone\n",
|
717 |
+
"!pip install semantic-router\n",
|
718 |
+
"!pip install datasets"
|
719 |
+
]
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"cell_type": "code",
|
723 |
+
"source": [
|
724 |
+
"!pip install numpy==1.26.0"
|
725 |
+
],
|
726 |
+
"metadata": {
|
727 |
+
"id": "k_b_EgJVTnwQ"
|
728 |
+
},
|
729 |
+
"execution_count": null,
|
730 |
+
"outputs": []
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"cell_type": "code",
|
734 |
+
"source": [
|
735 |
+
"!pip install semantic-router[local]"
|
736 |
+
],
|
737 |
+
"metadata": {
|
738 |
+
"id": "yb9c4QahkH6p"
|
739 |
+
},
|
740 |
+
"execution_count": null,
|
741 |
+
"outputs": []
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"cell_type": "markdown",
|
745 |
+
"source": [
|
746 |
+
"Collecting Data"
|
747 |
+
],
|
748 |
+
"metadata": {
|
749 |
+
"id": "GkgPDkwzHwHX"
|
750 |
+
}
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"cell_type": "code",
|
754 |
+
"source": [
|
755 |
+
"import praw\n",
|
756 |
+
"from google.colab import userdata\n",
|
757 |
+
"\n",
|
758 |
+
"reddit = praw.Reddit(\n",
|
759 |
+
" client_id=userdata.get('REDDIT_CLIENT_ID'),\n",
|
760 |
+
" client_secret=userdata.get('REDDIT_CLIENT_SECRET'),\n",
|
761 |
+
" user_agent=userdata.get('REDDIT_USER_AGENT'),\n",
|
762 |
+
")"
|
763 |
+
],
|
764 |
+
"metadata": {
|
765 |
+
"id": "bmzp0IKW04XI"
|
766 |
+
},
|
767 |
+
"execution_count": null,
|
768 |
+
"outputs": []
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"cell_type": "code",
|
772 |
+
"source": [
|
773 |
+
"def submissionToDict(submission):\n",
|
774 |
+
" submissionAsDict = {}\n",
|
775 |
+
" submissionAsDict['id'] = submission.id\n",
|
776 |
+
" # Metadata is directly stored as a dictionary with 'title' and 'body'\n",
|
777 |
+
" submissionAsDict['metadata'] = {\n",
|
778 |
+
" 'title': submission.title,\n",
|
779 |
+
" 'content': '\\n'.join([comment.body for comment in submission.comments.list() if isinstance(comment, praw.models.Comment)]) # Join comments into a single string, but only if it's a Comment object\n",
|
780 |
+
" }\n",
|
781 |
+
" return submissionAsDict"
|
782 |
+
],
|
783 |
+
"metadata": {
|
784 |
+
"id": "D-n4R8Gh7JQH"
|
785 |
+
},
|
786 |
+
"execution_count": null,
|
787 |
+
"outputs": []
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"cell_type": "code",
|
791 |
+
"source": [
|
792 |
+
"from IPython.display import clear_output\n",
|
793 |
+
"\n",
|
794 |
+
"data = []\n",
|
795 |
+
"subreddit = reddit.subreddit(\"AskNYC\")\n",
|
796 |
+
"for submission in subreddit.hot(limit=10):\n",
|
797 |
+
" data.append(submissionToDict(submission)) # Await the result of submissionToDict\n",
|
798 |
+
"\n",
|
799 |
+
"clear_output()"
|
800 |
+
],
|
801 |
+
"metadata": {
|
802 |
+
"id": "PrZKgKJO7Ygh"
|
803 |
+
},
|
804 |
+
"execution_count": null,
|
805 |
+
"outputs": []
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"cell_type": "code",
|
809 |
+
"source": [
|
810 |
+
"from datasets import Dataset\n",
|
811 |
+
"\n",
|
812 |
+
"# Convert your existing 'data' list into a Dataset object\n",
|
813 |
+
"data = Dataset.from_list(data)\n",
|
814 |
+
"\n",
|
815 |
+
"# Apply the mapping function to structure the data\n",
|
816 |
+
"data = data.map(lambda x: {\n",
|
817 |
+
" \"id\": x[\"id\"],\n",
|
818 |
+
" \"metadata\": {\n",
|
819 |
+
" \"title\": x[\"metadata\"][\"title\"], # Access title from metadata\n",
|
820 |
+
" \"content\": x[\"metadata\"][\"content\"], # Access content from metadata\n",
|
821 |
+
" }\n",
|
822 |
+
"})\n",
|
823 |
+
"\n",
|
824 |
+
"# Since you don't have the extra columns in your original data\n",
|
825 |
+
"# you can skip the remove_columns step\n",
|
826 |
+
"\n",
|
827 |
+
"# Now 'data' is a Dataset object\n",
|
828 |
+
"print(data)\n"
|
829 |
+
],
|
830 |
+
"metadata": {
|
831 |
+
"colab": {
|
832 |
+
"base_uri": "https://localhost:8080/",
|
833 |
+
"height": 120,
|
834 |
+
"referenced_widgets": [
|
835 |
+
"d67f5fd0199a41bb949a974fbd3ffab2",
|
836 |
+
"2113f2a1b6ab40fd8232aeec27a18443",
|
837 |
+
"a9d7ad46be6747ffbab4b2c8614ddce8",
|
838 |
+
"a6ff8a0f04944a7ea4c310d21d6ffd0b",
|
839 |
+
"05325e3c286d49d1a2f4b07ca83f4932",
|
840 |
+
"fbd9cc97dc474c7d99a7e2a9c4c9e598",
|
841 |
+
"1ac94815802c4d60b605e5a6bf375349",
|
842 |
+
"bf3fd415224e4c379013624bf4701a80",
|
843 |
+
"4d35d12cf5774b3ba9958bced27b2444",
|
844 |
+
"c2fd01b3bf494abdbae47574a8cdb367",
|
845 |
+
"01248f0d5d33408b8038c1aefcf52888"
|
846 |
+
]
|
847 |
+
},
|
848 |
+
"id": "Aw2zNQW0MRgv",
|
849 |
+
"outputId": "655bf508-a1a2-4ef3-fc46-0db101321d0c"
|
850 |
+
},
|
851 |
+
"execution_count": null,
|
852 |
+
"outputs": [
|
853 |
+
{
|
854 |
+
"output_type": "display_data",
|
855 |
+
"data": {
|
856 |
+
"text/plain": [
|
857 |
+
"Map: 0%| | 0/10 [00:00<?, ? examples/s]"
|
858 |
+
],
|
859 |
+
"application/vnd.jupyter.widget-view+json": {
|
860 |
+
"version_major": 2,
|
861 |
+
"version_minor": 0,
|
862 |
+
"model_id": "d67f5fd0199a41bb949a974fbd3ffab2"
|
863 |
+
}
|
864 |
+
},
|
865 |
+
"metadata": {}
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"output_type": "stream",
|
869 |
+
"name": "stdout",
|
870 |
+
"text": [
|
871 |
+
"Dataset({\n",
|
872 |
+
" features: ['id', 'metadata'],\n",
|
873 |
+
" num_rows: 10\n",
|
874 |
+
"})\n"
|
875 |
+
]
|
876 |
+
}
|
877 |
+
]
|
878 |
+
},
|
879 |
+
{
|
880 |
+
"cell_type": "markdown",
|
881 |
+
"source": [
|
882 |
+
"Connect to Pinecone"
|
883 |
+
],
|
884 |
+
"metadata": {
|
885 |
+
"id": "9CFcqKNtHx7P"
|
886 |
+
}
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"cell_type": "code",
|
890 |
+
"source": [
|
891 |
+
"from semantic_router.encoders import HuggingFaceEncoder\n",
|
892 |
+
"\n",
|
893 |
+
"encoder = HuggingFaceEncoder(name=\"dwzhu/e5-base-4k\")\n",
|
894 |
+
"embeds = encoder([\"this is a test\"])\n",
|
895 |
+
"dims = len(embeds[0])"
|
896 |
+
],
|
897 |
+
"metadata": {
|
898 |
+
"id": "7ANnOvOAH5EP"
|
899 |
+
},
|
900 |
+
"execution_count": null,
|
901 |
+
"outputs": []
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"cell_type": "code",
|
905 |
+
"source": [
|
906 |
+
"import os\n",
|
907 |
+
"import getpass\n",
|
908 |
+
"from pinecone import Pinecone\n",
|
909 |
+
"\n",
|
910 |
+
"# initialize connection to pinecone (get API key at app.pinecone.io)\n",
|
911 |
+
"api_key = userdata.get('PINECONE_API_KEY')\n",
|
912 |
+
"\n",
|
913 |
+
"# configure client\n",
|
914 |
+
"pc = Pinecone(api_key=api_key)\n"
|
915 |
+
],
|
916 |
+
"metadata": {
|
917 |
+
"id": "9Vob3-UwJd3q"
|
918 |
+
},
|
919 |
+
"execution_count": null,
|
920 |
+
"outputs": []
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"cell_type": "code",
|
924 |
+
"source": [
|
925 |
+
"# configure client\n",
|
926 |
+
"pc = Pinecone(api_key=api_key)\n",
|
927 |
+
"\n",
|
928 |
+
"from pinecone import ServerlessSpec\n",
|
929 |
+
"\n",
|
930 |
+
"spec = ServerlessSpec(\n",
|
931 |
+
" cloud=\"aws\", region=\"us-east-1\"\n",
|
932 |
+
")\n"
|
933 |
+
],
|
934 |
+
"metadata": {
|
935 |
+
"id": "U4EjLI9HJU9U"
|
936 |
+
},
|
937 |
+
"execution_count": null,
|
938 |
+
"outputs": []
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"cell_type": "code",
|
942 |
+
"source": [
|
943 |
+
"import time\n",
|
944 |
+
"\n",
|
945 |
+
"index_name = \"groq-llama-3-rag\"\n",
|
946 |
+
"existing_indexes = [\n",
|
947 |
+
" index_info[\"name\"] for index_info in pc.list_indexes()\n",
|
948 |
+
"]\n",
|
949 |
+
"\n",
|
950 |
+
"# check if index already exists (it shouldn't if this is first time)\n",
|
951 |
+
"if index_name not in existing_indexes:\n",
|
952 |
+
" # if does not exist, create index\n",
|
953 |
+
" pc.create_index(\n",
|
954 |
+
" index_name,\n",
|
955 |
+
" dimension=dims,\n",
|
956 |
+
" metric='cosine',\n",
|
957 |
+
" spec=spec\n",
|
958 |
+
" )\n",
|
959 |
+
" # wait for index to be initialized\n",
|
960 |
+
" while not pc.describe_index(index_name).status['ready']:\n",
|
961 |
+
" time.sleep(1)\n",
|
962 |
+
"\n",
|
963 |
+
"# connect to index\n",
|
964 |
+
"index = pc.Index(index_name)\n",
|
965 |
+
"time.sleep(1)\n",
|
966 |
+
"# view index stats\n",
|
967 |
+
"index.describe_index_stats()"
|
968 |
+
],
|
969 |
+
"metadata": {
|
970 |
+
"id": "1HISfuQBFKHD"
|
971 |
+
},
|
972 |
+
"execution_count": null,
|
973 |
+
"outputs": []
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"cell_type": "code",
|
977 |
+
"source": [
|
978 |
+
"from tqdm.auto import tqdm\n",
|
979 |
+
"\n",
|
980 |
+
"batch_size = 128 # how many embeddings we create and insert at once\n",
|
981 |
+
"\n",
|
982 |
+
"for i in tqdm(range(0, len(data), batch_size)):\n",
|
983 |
+
" # find end of batch\n",
|
984 |
+
" i_end = min(len(data), i+batch_size)\n",
|
985 |
+
" # create batch\n",
|
986 |
+
" batch = data[i:i_end]\n",
|
987 |
+
" # create embeddings\n",
|
988 |
+
" chunks = [f'{x[\"title\"]}: {x[\"content\"]}' for x in batch[\"metadata\"]]\n",
|
989 |
+
" embeds = encoder(chunks)\n",
|
990 |
+
" assert len(embeds) == (i_end-i)\n",
|
991 |
+
" to_upsert = list(zip(batch[\"id\"], embeds, batch[\"metadata\"]))\n",
|
992 |
+
" # upsert to Pinecone\n",
|
993 |
+
" index.upsert(vectors=to_upsert)"
|
994 |
+
],
|
995 |
+
"metadata": {
|
996 |
+
"id": "W0EVhOpfLzlf"
|
997 |
+
},
|
998 |
+
"execution_count": null,
|
999 |
+
"outputs": []
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"cell_type": "markdown",
|
1003 |
+
"source": [
|
1004 |
+
"Now apply on different subreddits"
|
1005 |
+
],
|
1006 |
+
"metadata": {
|
1007 |
+
"id": "BzQi9RKKQQN4"
|
1008 |
+
}
|
1009 |
+
},
|
1010 |
+
{
|
1011 |
+
"cell_type": "code",
|
1012 |
+
"source": [
|
1013 |
+
"\n",
|
1014 |
+
"data = []\n",
|
1015 |
+
"subreddit = reddit.subreddit(\"AskNYC\")\n",
|
1016 |
+
"for submission in subreddit.hot(limit=1000):\n",
|
1017 |
+
" data.append(submissionToDict(submission)) # Await the result of submissionToDict\n",
|
1018 |
+
"\n",
|
1019 |
+
"# Convert your existing 'data' list into a Dataset object\n",
|
1020 |
+
"data = Dataset.from_list(data)\n",
|
1021 |
+
"\n",
|
1022 |
+
"# Apply the mapping function to structure the data\n",
|
1023 |
+
"data = data.map(lambda x: {\n",
|
1024 |
+
" \"id\": x[\"id\"],\n",
|
1025 |
+
" \"metadata\": {\n",
|
1026 |
+
" \"title\": x[\"metadata\"][\"title\"], # Access title from metadata\n",
|
1027 |
+
" \"content\": x[\"metadata\"][\"content\"], # Access content from metadata\n",
|
1028 |
+
" }\n",
|
1029 |
+
"})\n"
|
1030 |
+
],
|
1031 |
+
"metadata": {
|
1032 |
+
"id": "PxDIYKlHQMkf"
|
1033 |
+
},
|
1034 |
+
"execution_count": null,
|
1035 |
+
"outputs": []
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"cell_type": "code",
|
1039 |
+
"source": [
|
1040 |
+
"from tqdm.auto import tqdm\n",
|
1041 |
+
"\n",
|
1042 |
+
"batch_size = 128 # how many embeddings we create and insert at once\n",
|
1043 |
+
"\n",
|
1044 |
+
"for i in tqdm(range(0, len(data), batch_size)):\n",
|
1045 |
+
" # find end of batch\n",
|
1046 |
+
" i_end = min(len(data), i + batch_size)\n",
|
1047 |
+
" # create batch\n",
|
1048 |
+
" batch = data[i:i_end]\n",
|
1049 |
+
" # create embeddings\n",
|
1050 |
+
" chunks = [f'{x[\"title\"]}: {x[\"content\"][:1000]}' for x in batch[\"metadata\"]] # Truncate content to 1000 characters\n",
|
1051 |
+
" embeds = encoder(chunks)\n",
|
1052 |
+
" assert len(embeds) == (i_end - i)\n",
|
1053 |
+
" # Reduce metadata size before upserting\n",
|
1054 |
+
" metadata_to_upsert = [{'title': x['title'], 'content_snippet': x['content'][:2000]} for x in batch['metadata']] # Truncate content snippet to 2000 characters\n",
|
1055 |
+
" to_upsert = list(zip(batch[\"id\"], embeds, metadata_to_upsert)) # Use the reduced metadata\n",
|
1056 |
+
" # upsert to Pinecone\n",
|
1057 |
+
" index.upsert(vectors=to_upsert)"
|
1058 |
+
],
|
1059 |
+
"metadata": {
|
1060 |
+
"colab": {
|
1061 |
+
"base_uri": "https://localhost:8080/",
|
1062 |
+
"height": 49,
|
1063 |
+
"referenced_widgets": [
|
1064 |
+
"6a04ce68a3fd4e8a85eab7ef95b460bf",
|
1065 |
+
"8d334cffae1e43d3965926cf47915d87",
|
1066 |
+
"9c4084b9c03c4b7d9fb6351d67e51181",
|
1067 |
+
"1af047bf93ef458ab60dec0419e162c0",
|
1068 |
+
"ad9c688d0f8b4a94819008130cedbada",
|
1069 |
+
"7fd0861c22a94f639cae337d38815752",
|
1070 |
+
"13d05e0960ac4220a3874135a233b5b2",
|
1071 |
+
"46b40383a6ce4ca2ae35faa715c87f87",
|
1072 |
+
"2e2ec919da9240e48f7f85464bd8376b",
|
1073 |
+
"190b28c62a7548599de3cf1fe701c9e3",
|
1074 |
+
"50c3e507389643ceaf02095a60d63045"
|
1075 |
+
]
|
1076 |
+
},
|
1077 |
+
"id": "jRR61RObW3aM",
|
1078 |
+
"outputId": "a2e5ba63-25de-4a94-9c4e-873003835eb5"
|
1079 |
+
},
|
1080 |
+
"execution_count": null,
|
1081 |
+
"outputs": [
|
1082 |
+
{
|
1083 |
+
"output_type": "display_data",
|
1084 |
+
"data": {
|
1085 |
+
"text/plain": [
|
1086 |
+
" 0%| | 0/7 [00:00<?, ?it/s]"
|
1087 |
+
],
|
1088 |
+
"application/vnd.jupyter.widget-view+json": {
|
1089 |
+
"version_major": 2,
|
1090 |
+
"version_minor": 0,
|
1091 |
+
"model_id": "6a04ce68a3fd4e8a85eab7ef95b460bf"
|
1092 |
+
}
|
1093 |
+
},
|
1094 |
+
"metadata": {}
|
1095 |
+
}
|
1096 |
+
]
|
1097 |
+
},
|
1098 |
+
{
|
1099 |
+
"cell_type": "markdown",
|
1100 |
+
"source": [
|
1101 |
+
"Others"
|
1102 |
+
],
|
1103 |
+
"metadata": {
|
1104 |
+
"id": "MzEZK65_Xeyo"
|
1105 |
+
}
|
1106 |
+
},
|
1107 |
+
{
|
1108 |
+
"cell_type": "code",
|
1109 |
+
"source": [
|
1110 |
+
"for item in ['Manhattan','Bronx', 'Brooklyn', 'Queens', 'StatenIsland']:\n",
|
1111 |
+
" data = []\n",
|
1112 |
+
" subreddit = reddit.subreddit(item)\n",
|
1113 |
+
" for submission in subreddit.hot(limit=256):\n",
|
1114 |
+
" data.append(submissionToDict(submission)) # Await the result of submissionToDict\n",
|
1115 |
+
"\n",
|
1116 |
+
" # Convert your existing 'data' list into a Dataset object\n",
|
1117 |
+
" data = Dataset.from_list(data)\n",
|
1118 |
+
"\n",
|
1119 |
+
" # Apply the mapping function to structure the data\n",
|
1120 |
+
" data = data.map(lambda x: {\n",
|
1121 |
+
" \"id\": x[\"id\"],\n",
|
1122 |
+
" \"metadata\": {\n",
|
1123 |
+
" \"title\": x[\"metadata\"][\"title\"], # Access title from metadata\n",
|
1124 |
+
" \"content\": x[\"metadata\"][\"content\"], # Access content from metadata\n",
|
1125 |
+
" }\n",
|
1126 |
+
" })\n",
|
1127 |
+
"\n",
|
1128 |
+
" batch_size = 128 # how many embeddings we create and insert at once\n",
|
1129 |
+
"\n",
|
1130 |
+
" for i in tqdm(range(0, len(data), batch_size)):\n",
|
1131 |
+
" # find end of batch\n",
|
1132 |
+
" i_end = min(len(data), i + batch_size)\n",
|
1133 |
+
" # create batch\n",
|
1134 |
+
" batch = data[i:i_end]\n",
|
1135 |
+
" # create embeddings\n",
|
1136 |
+
" chunks = [f'{x[\"title\"]}: {x[\"content\"][:1000]}' for x in batch[\"metadata\"]] # Truncate content to 1000 characters\n",
|
1137 |
+
" embeds = encoder(chunks)\n",
|
1138 |
+
" assert len(embeds) == (i_end - i)\n",
|
1139 |
+
" # Reduce metadata size before upserting\n",
|
1140 |
+
" metadata_to_upsert = [{'title': x['title'], 'content_snippet': x['content'][:2000]} for x in batch['metadata']] # Truncate content snippet to 2000 characters\n",
|
1141 |
+
" to_upsert = list(zip(batch[\"id\"], embeds, metadata_to_upsert)) # Use the reduced metadata\n",
|
1142 |
+
" # upsert to Pinecone\n",
|
1143 |
+
" index.upsert(vectors=to_upsert)\n"
|
1144 |
+
],
|
1145 |
+
"metadata": {
|
1146 |
+
"id": "QD0xto7KYHCv"
|
1147 |
+
},
|
1148 |
+
"execution_count": null,
|
1149 |
+
"outputs": []
|
1150 |
+
}
|
1151 |
+
]
|
1152 |
+
}
|