Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Merge branch 'main' into model_size_parameters
Browse files- EXTERNAL_MODEL_RESULTS.json +0 -0
- app.py +40 -1
EXTERNAL_MODEL_RESULTS.json
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
CHANGED
|
@@ -215,6 +215,17 @@ TASK_LIST_RETRIEVAL_FR = [
|
|
| 215 |
"XPQARetrieval (fr)",
|
| 216 |
]
|
| 217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 218 |
TASK_LIST_RETRIEVAL_PL = [
|
| 219 |
"ArguAna-PL",
|
| 220 |
"DBPedia-PL",
|
|
@@ -324,6 +335,7 @@ def make_clickable_model(model_name, link=None):
|
|
| 324 |
# Models without metadata, thus we cannot fetch their results naturally
|
| 325 |
EXTERNAL_MODELS = [
|
| 326 |
"Baichuan-text-embedding",
|
|
|
|
| 327 |
"Cohere-embed-multilingual-v3.0",
|
| 328 |
"Cohere-embed-multilingual-light-v3.0",
|
| 329 |
"DanskBERT",
|
|
@@ -342,6 +354,7 @@ EXTERNAL_MODELS = [
|
|
| 342 |
"bert-base-swedish-cased",
|
| 343 |
"bert-base-uncased",
|
| 344 |
"bge-base-zh-v1.5",
|
|
|
|
| 345 |
"bge-large-zh-v1.5",
|
| 346 |
"bge-large-zh-noinstruct",
|
| 347 |
"bge-small-zh-v1.5",
|
|
@@ -364,6 +377,8 @@ EXTERNAL_MODELS = [
|
|
| 364 |
"gelectra-base",
|
| 365 |
"gelectra-large",
|
| 366 |
"glove.6B.300d",
|
|
|
|
|
|
|
| 367 |
"gottbert-base",
|
| 368 |
"gtr-t5-base",
|
| 369 |
"gtr-t5-large",
|
|
@@ -434,6 +449,7 @@ EXTERNAL_MODELS = [
|
|
| 434 |
]
|
| 435 |
|
| 436 |
EXTERNAL_MODEL_TO_LINK = {
|
|
|
|
| 437 |
"Cohere-embed-multilingual-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0",
|
| 438 |
"Cohere-embed-multilingual-light-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-light-v3.0",
|
| 439 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
|
@@ -450,6 +466,7 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 450 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
| 451 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
| 452 |
"bge-base-zh-v1.5": "https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
|
|
|
| 453 |
"bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
| 454 |
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
| 455 |
"bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
|
@@ -480,6 +497,8 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 480 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
| 481 |
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
|
| 482 |
"glove.6B.300d": "https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d",
|
|
|
|
|
|
|
| 483 |
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
|
| 484 |
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
| 485 |
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
|
@@ -553,6 +572,7 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 553 |
}
|
| 554 |
|
| 555 |
EXTERNAL_MODEL_TO_DIM = {
|
|
|
|
| 556 |
"Cohere-embed-multilingual-v3.0": 1024,
|
| 557 |
"Cohere-embed-multilingual-light-v3.0": 384,
|
| 558 |
"all-MiniLM-L12-v2": 384,
|
|
@@ -568,6 +588,7 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 568 |
"bert-base-swedish-cased": 768,
|
| 569 |
"bert-base-uncased": 768,
|
| 570 |
"bge-base-zh-v1.5": 768,
|
|
|
|
| 571 |
"bge-large-zh-v1.5": 1024,
|
| 572 |
"bge-large-zh-noinstruct": 1024,
|
| 573 |
"bge-small-zh-v1.5": 512,
|
|
@@ -601,6 +622,8 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 601 |
"gelectra-base": 768,
|
| 602 |
"gelectra-large": 1024,
|
| 603 |
"glove.6B.300d": 300,
|
|
|
|
|
|
|
| 604 |
"gottbert-base": 768,
|
| 605 |
"gtr-t5-base": 768,
|
| 606 |
"gtr-t5-large": 768,
|
|
@@ -671,6 +694,7 @@ EXTERNAL_MODEL_TO_DIM = {
|
|
| 671 |
}
|
| 672 |
|
| 673 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
|
|
|
| 674 |
"Cohere-embed-multilingual-v3.0": 512,
|
| 675 |
"Cohere-embed-multilingual-light-v3.0": 512,
|
| 676 |
"all-MiniLM-L12-v2": 512,
|
|
@@ -686,6 +710,7 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 686 |
"bert-base-swedish-cased": 512,
|
| 687 |
"bert-base-uncased": 512,
|
| 688 |
"bge-base-zh-v1.5": 512,
|
|
|
|
| 689 |
"bge-large-zh-v1.5": 512,
|
| 690 |
"bge-large-zh-noinstruct": 512,
|
| 691 |
"bge-small-zh-v1.5": 512,
|
|
@@ -715,6 +740,8 @@ EXTERNAL_MODEL_TO_SEQLEN = {
|
|
| 715 |
"gbert-large": 512,
|
| 716 |
"gelectra-base": 512,
|
| 717 |
"gelectra-large": 512,
|
|
|
|
|
|
|
| 718 |
"gottbert-base": 512,
|
| 719 |
"glove.6B.300d": "N/A",
|
| 720 |
"gtr-t5-base": 512,
|
|
@@ -904,6 +931,8 @@ PROPRIETARY_MODELS = {
|
|
| 904 |
"voyage-code-2",
|
| 905 |
"voyage-lite-01-instruct",
|
| 906 |
"voyage-lite-02-instruct",
|
|
|
|
|
|
|
| 907 |
}
|
| 908 |
PROPRIETARY_MODELS = {
|
| 909 |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))
|
|
@@ -1151,7 +1180,7 @@ def add_task(examples):
|
|
| 1151 |
examples["mteb_task"] = "PairClassification"
|
| 1152 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RERANKING + TASK_LIST_RERANKING_FR + TASK_LIST_RERANKING_ZH):
|
| 1153 |
examples["mteb_task"] = "Reranking"
|
| 1154 |
-
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_FR + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH):
|
| 1155 |
examples["mteb_task"] = "Retrieval"
|
| 1156 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_STS + TASK_LIST_STS_FR + TASK_LIST_STS_PL + TASK_LIST_STS_ZH):
|
| 1157 |
examples["mteb_task"] = "STS"
|
|
@@ -1569,6 +1598,7 @@ DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIF
|
|
| 1569 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_CLASSIFICATION_OTHER]
|
| 1570 |
DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_CLUSTERING_DE]
|
| 1571 |
DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_STS_OTHER]
|
|
|
|
| 1572 |
|
| 1573 |
# Exact, add all non-nan integer values for every dataset
|
| 1574 |
NUM_SCORES = 0
|
|
@@ -1602,6 +1632,7 @@ for d in [
|
|
| 1602 |
DATA_RETRIEVAL_FR,
|
| 1603 |
DATA_RETRIEVAL_PL,
|
| 1604 |
DATA_RETRIEVAL_ZH,
|
|
|
|
| 1605 |
DATA_STS_EN,
|
| 1606 |
DATA_STS_FR,
|
| 1607 |
DATA_STS_PL,
|
|
@@ -1893,6 +1924,14 @@ data = {
|
|
| 1893 |
"data": DATA_RETRIEVAL_FR,
|
| 1894 |
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR)
|
| 1895 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1896 |
{
|
| 1897 |
"language": "Polish",
|
| 1898 |
"description": "**Retrieval Polish Leaderboard** ππ΅π±",
|
|
|
|
| 215 |
"XPQARetrieval (fr)",
|
| 216 |
]
|
| 217 |
|
| 218 |
+
TASK_LIST_RETRIEVAL_LAW = [
|
| 219 |
+
"AILACasedocs",
|
| 220 |
+
"AILAStatutes",
|
| 221 |
+
"GerDaLIRSmall",
|
| 222 |
+
"LeCaRDv2",
|
| 223 |
+
"LegalBenchConsumerContractsQA",
|
| 224 |
+
"LegalBenchCorporateLobbying",
|
| 225 |
+
"LegalQuAD",
|
| 226 |
+
"LegalSummarization",
|
| 227 |
+
]
|
| 228 |
+
|
| 229 |
TASK_LIST_RETRIEVAL_PL = [
|
| 230 |
"ArguAna-PL",
|
| 231 |
"DBPedia-PL",
|
|
|
|
| 335 |
# Models without metadata, thus we cannot fetch their results naturally
|
| 336 |
EXTERNAL_MODELS = [
|
| 337 |
"Baichuan-text-embedding",
|
| 338 |
+
"Cohere-embed-english-v3.0",
|
| 339 |
"Cohere-embed-multilingual-v3.0",
|
| 340 |
"Cohere-embed-multilingual-light-v3.0",
|
| 341 |
"DanskBERT",
|
|
|
|
| 354 |
"bert-base-swedish-cased",
|
| 355 |
"bert-base-uncased",
|
| 356 |
"bge-base-zh-v1.5",
|
| 357 |
+
"bge-large-en-v1.5",
|
| 358 |
"bge-large-zh-v1.5",
|
| 359 |
"bge-large-zh-noinstruct",
|
| 360 |
"bge-small-zh-v1.5",
|
|
|
|
| 377 |
"gelectra-base",
|
| 378 |
"gelectra-large",
|
| 379 |
"glove.6B.300d",
|
| 380 |
+
"google-gecko.text-embedding-preview-0409",
|
| 381 |
+
"google-gecko-256.text-embedding-preview-0409",
|
| 382 |
"gottbert-base",
|
| 383 |
"gtr-t5-base",
|
| 384 |
"gtr-t5-large",
|
|
|
|
| 449 |
]
|
| 450 |
|
| 451 |
EXTERNAL_MODEL_TO_LINK = {
|
| 452 |
+
"Cohere-embed-english-v3.0": "https://huggingface.co/Cohere/Cohere-embed-english-v3.0",
|
| 453 |
"Cohere-embed-multilingual-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0",
|
| 454 |
"Cohere-embed-multilingual-light-v3.0": "https://huggingface.co/Cohere/Cohere-embed-multilingual-light-v3.0",
|
| 455 |
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
|
|
|
| 466 |
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
| 467 |
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
| 468 |
"bge-base-zh-v1.5": "https://huggingface.co/BAAI/bge-base-zh-v1.5",
|
| 469 |
+
"bge-large-en-v1.5": "https://huggingface.co/BAAI/bge-large-en-v1.5",
|
| 470 |
"bge-large-zh-v1.5": "https://huggingface.co/BAAI/bge-large-zh-v1.5",
|
| 471 |
"bge-large-zh-noinstruct": "https://huggingface.co/BAAI/bge-large-zh-noinstruct",
|
| 472 |
"bge-small-zh-v1.5": "https://huggingface.co/BAAI/bge-small-zh-v1.5",
|
|
|
|
| 497 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
| 498 |
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
|
| 499 |
"glove.6B.300d": "https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d",
|
| 500 |
+
"google-gecko.text-embedding-preview-0409": "https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings#latest_models",
|
| 501 |
+
"google-gecko-256.text-embedding-preview-0409": "https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings#latest_models",
|
| 502 |
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
|
| 503 |
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
| 504 |
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
|
|
|
| 572 |
}
|
| 573 |
|
| 574 |
EXTERNAL_MODEL_TO_DIM = {
|
| 575 |
+
"Cohere-embed-english-v3.0": 1024,
|
| 576 |
"Cohere-embed-multilingual-v3.0": 1024,
|
| 577 |
"Cohere-embed-multilingual-light-v3.0": 384,
|
| 578 |
"all-MiniLM-L12-v2": 384,
|
|
|
|
| 588 |
"bert-base-swedish-cased": 768,
|
| 589 |
"bert-base-uncased": 768,
|
| 590 |
"bge-base-zh-v1.5": 768,
|
| 591 |
+
"bge-large-en-v1.5": 1024,
|
| 592 |
"bge-large-zh-v1.5": 1024,
|
| 593 |
"bge-large-zh-noinstruct": 1024,
|
| 594 |
"bge-small-zh-v1.5": 512,
|
|
|
|
| 622 |
"gelectra-base": 768,
|
| 623 |
"gelectra-large": 1024,
|
| 624 |
"glove.6B.300d": 300,
|
| 625 |
+
"google-gecko.text-embedding-preview-0409": 768,
|
| 626 |
+
"google-gecko-256.text-embedding-preview-0409": 256,
|
| 627 |
"gottbert-base": 768,
|
| 628 |
"gtr-t5-base": 768,
|
| 629 |
"gtr-t5-large": 768,
|
|
|
|
| 694 |
}
|
| 695 |
|
| 696 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
| 697 |
+
"Cohere-embed-english-v3.0": 512,
|
| 698 |
"Cohere-embed-multilingual-v3.0": 512,
|
| 699 |
"Cohere-embed-multilingual-light-v3.0": 512,
|
| 700 |
"all-MiniLM-L12-v2": 512,
|
|
|
|
| 710 |
"bert-base-swedish-cased": 512,
|
| 711 |
"bert-base-uncased": 512,
|
| 712 |
"bge-base-zh-v1.5": 512,
|
| 713 |
+
"bge-large-en-v1.5": 512,
|
| 714 |
"bge-large-zh-v1.5": 512,
|
| 715 |
"bge-large-zh-noinstruct": 512,
|
| 716 |
"bge-small-zh-v1.5": 512,
|
|
|
|
| 740 |
"gbert-large": 512,
|
| 741 |
"gelectra-base": 512,
|
| 742 |
"gelectra-large": 512,
|
| 743 |
+
"google-gecko.text-embedding-preview-0409": 2048,
|
| 744 |
+
"google-gecko-256.text-embedding-preview-0409": 2048,
|
| 745 |
"gottbert-base": 512,
|
| 746 |
"glove.6B.300d": "N/A",
|
| 747 |
"gtr-t5-base": 512,
|
|
|
|
| 931 |
"voyage-code-2",
|
| 932 |
"voyage-lite-01-instruct",
|
| 933 |
"voyage-lite-02-instruct",
|
| 934 |
+
"google-gecko.text-embedding-preview-0409",
|
| 935 |
+
"google-gecko-256.text-embedding-preview-0409",
|
| 936 |
}
|
| 937 |
PROPRIETARY_MODELS = {
|
| 938 |
make_clickable_model(model, link=EXTERNAL_MODEL_TO_LINK.get(model, "https://huggingface.co/spaces/mteb/leaderboard"))
|
|
|
|
| 1180 |
examples["mteb_task"] = "PairClassification"
|
| 1181 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RERANKING + TASK_LIST_RERANKING_FR + TASK_LIST_RERANKING_ZH):
|
| 1182 |
examples["mteb_task"] = "Reranking"
|
| 1183 |
+
elif examples["mteb_dataset_name"] in norm(TASK_LIST_RETRIEVAL_NORM + TASK_LIST_RETRIEVAL_FR + TASK_LIST_RETRIEVAL_PL + TASK_LIST_RETRIEVAL_ZH + TASK_LIST_RETRIEVAL_LAW):
|
| 1184 |
examples["mteb_task"] = "Retrieval"
|
| 1185 |
elif examples["mteb_dataset_name"] in norm(TASK_LIST_STS + TASK_LIST_STS_FR + TASK_LIST_STS_PL + TASK_LIST_STS_ZH):
|
| 1186 |
examples["mteb_task"] = "STS"
|
|
|
|
| 1598 |
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_CLASSIFICATION_OTHER]
|
| 1599 |
DATA_CLUSTERING_DE = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_CLUSTERING_DE]
|
| 1600 |
DATA_STS_OTHER = get_mteb_data(["STS"], [], TASK_LIST_STS_OTHER)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_STS_OTHER]
|
| 1601 |
+
DATA_RETRIEVAL_LAW = get_mteb_data(["Retrieval"], [], TASK_LIST_RETRIEVAL_LAW)[["Rank", "Model", "Model Size (Million Parameters)", "Average"] + TASK_LIST_RETRIEVAL_LAW]
|
| 1602 |
|
| 1603 |
# Exact, add all non-nan integer values for every dataset
|
| 1604 |
NUM_SCORES = 0
|
|
|
|
| 1632 |
DATA_RETRIEVAL_FR,
|
| 1633 |
DATA_RETRIEVAL_PL,
|
| 1634 |
DATA_RETRIEVAL_ZH,
|
| 1635 |
+
DATA_RETRIEVAL_LAW,
|
| 1636 |
DATA_STS_EN,
|
| 1637 |
DATA_STS_FR,
|
| 1638 |
DATA_STS_PL,
|
|
|
|
| 1924 |
"data": DATA_RETRIEVAL_FR,
|
| 1925 |
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_FR)
|
| 1926 |
},
|
| 1927 |
+
{
|
| 1928 |
+
"language": "Law",
|
| 1929 |
+
"language_long": "English, German, Chinese",
|
| 1930 |
+
"description": "**Retrieval Law Leaderboard** πβοΈ",
|
| 1931 |
+
"credits": "[Voyage AI](https://www.voyageai.com/)",
|
| 1932 |
+
"data": DATA_RETRIEVAL_LAW,
|
| 1933 |
+
"refresh": partial(get_mteb_data, tasks=["Retrieval"], datasets=TASK_LIST_RETRIEVAL_LAW)
|
| 1934 |
+
},
|
| 1935 |
{
|
| 1936 |
"language": "Polish",
|
| 1937 |
"description": "**Retrieval Polish Leaderboard** ππ΅π±",
|