Spaces:
Runtime error
Runtime error
Commit
Β·
2458a90
1
Parent(s):
fa91720
Add new CLF, BTM leaderboards
Browse files
app.py
CHANGED
|
@@ -17,6 +17,9 @@ TASKS = [
|
|
| 17 |
"Summarization",
|
| 18 |
]
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
TASK_LIST_CLASSIFICATION = [
|
| 21 |
"AmazonCounterfactualClassification (en)",
|
| 22 |
"AmazonPolarityClassification",
|
|
@@ -34,6 +37,38 @@ TASK_LIST_CLASSIFICATION = [
|
|
| 34 |
|
| 35 |
TASK_LIST_CLASSIFICATION_NORM = [x.replace(" (en)", "") for x in TASK_LIST_CLASSIFICATION]
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
TASK_LIST_CLUSTERING = [
|
| 38 |
"ArxivClusteringP2P",
|
| 39 |
"ArxivClusteringS2S",
|
|
@@ -48,6 +83,7 @@ TASK_LIST_CLUSTERING = [
|
|
| 48 |
"TwentyNewsgroupsClustering",
|
| 49 |
]
|
| 50 |
|
|
|
|
| 51 |
TASK_LIST_CLUSTERING_DE = [
|
| 52 |
"BlurbsClusteringP2P",
|
| 53 |
"BlurbsClusteringS2S",
|
|
@@ -86,7 +122,8 @@ TASK_LIST_RETRIEVAL = [
|
|
| 86 |
"TRECCOVID",
|
| 87 |
]
|
| 88 |
|
| 89 |
-
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
|
|
|
| 90 |
"CQADupstackEnglishRetrieval",
|
| 91 |
"CQADupstackGamingRetrieval",
|
| 92 |
"CQADupstackGisRetrieval",
|
|
@@ -124,7 +161,6 @@ TASK_LIST_EN = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_
|
|
| 124 |
TASK_TO_METRIC = {
|
| 125 |
"BitextMining": "f1",
|
| 126 |
"Clustering": "v_measure",
|
| 127 |
-
"Clustering (DE)": "v_measure",
|
| 128 |
"Classification": "accuracy",
|
| 129 |
"PairClassification": "cos_sim_ap",
|
| 130 |
"Reranking": "map",
|
|
@@ -143,16 +179,23 @@ def make_clickable_model(model_name, link=None):
|
|
| 143 |
|
| 144 |
# Models without metadata, thus we cannot fetch their results naturally
|
| 145 |
EXTERNAL_MODELS = [
|
| 146 |
-
"LASER2",
|
| 147 |
-
"LaBSE",
|
| 148 |
"all-MiniLM-L12-v2",
|
| 149 |
"all-MiniLM-L6-v2",
|
| 150 |
"all-mpnet-base-v2",
|
| 151 |
"allenai-specter",
|
|
|
|
| 152 |
"bert-base-uncased",
|
| 153 |
"contriever-base-msmarco",
|
| 154 |
"cross-en-de-roberta-sentence-transformer",
|
|
|
|
|
|
|
| 155 |
"distiluse-base-multilingual-cased-v2",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
"gbert-base",
|
| 157 |
"gbert-large",
|
| 158 |
"gelectra-base",
|
|
@@ -164,9 +207,19 @@ EXTERNAL_MODELS = [
|
|
| 164 |
"gtr-t5-xl",
|
| 165 |
"gtr-t5-xxl",
|
| 166 |
"komninos",
|
|
|
|
|
|
|
| 167 |
"msmarco-bert-co-condensor",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
"paraphrase-multilingual-MiniLM-L12-v2",
|
| 169 |
"paraphrase-multilingual-mpnet-base-v2",
|
|
|
|
| 170 |
"sentence-t5-base",
|
| 171 |
"sentence-t5-large",
|
| 172 |
"sentence-t5-xl",
|
|
@@ -184,20 +237,58 @@ EXTERNAL_MODELS = [
|
|
| 184 |
"text-search-davinci-001",
|
| 185 |
"unsup-simcse-bert-base-uncased",
|
| 186 |
"use-cmlm-multilingual",
|
|
|
|
| 187 |
"xlm-roberta-large",
|
| 188 |
]
|
| 189 |
|
| 190 |
EXTERNAL_MODEL_TO_LINK = {
|
| 191 |
-
"
|
| 192 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
|
|
|
| 194 |
"distiluse-base-multilingual-cased-v2": "https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
"gbert-base": "https://huggingface.co/deepset/gbert-base",
|
| 196 |
"gbert-large": "https://huggingface.co/deepset/gbert-large",
|
| 197 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
| 198 |
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
|
|
|
|
| 199 |
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
"LASER2": "https://github.com/facebookresearch/LASER",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 202 |
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 203 |
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
|
@@ -209,173 +300,192 @@ EXTERNAL_MODEL_TO_LINK = {
|
|
| 209 |
"text-search-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 210 |
"text-search-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 211 |
"text-search-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 212 |
-
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
| 213 |
-
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
| 214 |
-
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
| 215 |
-
"sentence-t5-large": "https://huggingface.co/sentence-transformers/sentence-t5-large",
|
| 216 |
-
"sentence-t5-base": "https://huggingface.co/sentence-transformers/sentence-t5-base",
|
| 217 |
-
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
| 218 |
-
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
| 219 |
-
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
| 220 |
-
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
| 221 |
-
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
| 222 |
-
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
| 223 |
-
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
| 224 |
-
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
| 225 |
-
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
| 226 |
-
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 227 |
-
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 228 |
"unsup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased",
|
| 229 |
-
"
|
| 230 |
-
"
|
| 231 |
-
"
|
| 232 |
-
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
| 233 |
-
"all-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
|
| 234 |
-
"all-MiniLM-L6-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
|
| 235 |
-
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
| 236 |
-
"paraphrase-multilingual-mpnet-base-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
| 237 |
-
"paraphrase-multilingual-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
| 238 |
-
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
| 239 |
}
|
| 240 |
|
| 241 |
EXTERNAL_MODEL_TO_DIM = {
|
| 242 |
-
"xlm-roberta-large": 1024,
|
| 243 |
-
"use-cmlm-multilingual": 768,
|
| 244 |
-
"gottbert-base": 768,
|
| 245 |
-
"cross-en-de-roberta-sentence-transformer": 768,
|
| 246 |
-
"distiluse-base-multilingual-cased-v2": 512,
|
| 247 |
-
"gbert-base": 768,
|
| 248 |
-
"gbert-large": 1024,
|
| 249 |
-
"gelectra-base": 768,
|
| 250 |
-
"gelectra-large": 1024,
|
| 251 |
-
"gottbert-base": 768,
|
| 252 |
-
|
| 253 |
-
"LASER2": 1024,
|
| 254 |
-
"LaBSE": 768,
|
| 255 |
"all-MiniLM-L12-v2": 384,
|
| 256 |
"all-MiniLM-L6-v2": 384,
|
| 257 |
"all-mpnet-base-v2": 768,
|
| 258 |
-
"allenai-specter": 768,
|
|
|
|
| 259 |
"bert-base-uncased": 768,
|
| 260 |
"contriever-base-msmarco": 768,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
"glove.6B.300d": 300,
|
|
|
|
| 262 |
"gtr-t5-base": 768,
|
| 263 |
"gtr-t5-large": 768,
|
| 264 |
"gtr-t5-xl": 768,
|
| 265 |
"gtr-t5-xxl": 768,
|
| 266 |
"komninos": 300,
|
| 267 |
"msmarco-bert-co-condensor": 768,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
"paraphrase-multilingual-MiniLM-L12-v2": 384,
|
| 269 |
"paraphrase-multilingual-mpnet-base-v2": 768,
|
|
|
|
| 270 |
"sentence-t5-base": 768,
|
| 271 |
"sentence-t5-large": 768,
|
| 272 |
"sentence-t5-xl": 768,
|
| 273 |
"sentence-t5-xxl": 768,
|
| 274 |
"sup-simcse-bert-base-uncased": 768,
|
| 275 |
-
|
|
|
|
| 276 |
"text-embedding-ada-002": 1536,
|
| 277 |
-
|
| 278 |
"text-similarity-ada-001": 1024,
|
| 279 |
"text-similarity-babbage-001": 2048,
|
| 280 |
"text-similarity-curie-001": 4096,
|
| 281 |
"text-similarity-davinci-001": 12288,
|
| 282 |
-
|
| 283 |
"text-search-ada-doc-001": 1024,
|
| 284 |
"text-search-ada-query-001": 1024,
|
| 285 |
"text-search-ada-001": 1024,
|
| 286 |
"text-search-babbage-001": 2048,
|
| 287 |
"text-search-curie-001": 4096,
|
| 288 |
-
"text-search-davinci-001": 12288,
|
| 289 |
-
|
| 290 |
-
"
|
| 291 |
}
|
| 292 |
|
| 293 |
|
| 294 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
| 295 |
-
"xlm-roberta-large": 514,
|
| 296 |
-
"use-cmlm-multilingual": 512,
|
| 297 |
-
"gottbert-base": 512,
|
| 298 |
-
"cross-en-de-roberta-sentence-transformer": 514,
|
| 299 |
-
"distiluse-base-multilingual-cased-v2": 512,
|
| 300 |
-
"gbert-base": 512,
|
| 301 |
-
"gbert-large": 512,
|
| 302 |
-
"gelectra-base": 512,
|
| 303 |
-
"gelectra-large": 512,
|
| 304 |
-
"gottbert-base": 512,
|
| 305 |
-
|
| 306 |
-
"LASER2": "N/A",
|
| 307 |
-
"LaBSE": 512,
|
| 308 |
"all-MiniLM-L12-v2": 512,
|
| 309 |
"all-MiniLM-L6-v2": 512,
|
| 310 |
"all-mpnet-base-v2": 514,
|
| 311 |
"allenai-specter": 512,
|
|
|
|
| 312 |
"bert-base-uncased": 512,
|
| 313 |
"contriever-base-msmarco": 512,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
"glove.6B.300d": "N/A",
|
| 315 |
"gtr-t5-base": 512,
|
| 316 |
"gtr-t5-large": 512,
|
| 317 |
"gtr-t5-xl": 512,
|
| 318 |
"gtr-t5-xxl": 512,
|
| 319 |
"komninos": "N/A",
|
|
|
|
|
|
|
| 320 |
"msmarco-bert-co-condensor": 512,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
"paraphrase-multilingual-MiniLM-L12-v2": 512,
|
| 322 |
"paraphrase-multilingual-mpnet-base-v2": 514,
|
|
|
|
| 323 |
"sentence-t5-base": 512,
|
| 324 |
"sentence-t5-large": 512,
|
| 325 |
"sentence-t5-xl": 512,
|
| 326 |
"sentence-t5-xxl": 512,
|
| 327 |
"sup-simcse-bert-base-uncased": 512,
|
| 328 |
-
|
| 329 |
"text-embedding-ada-002": 8191,
|
| 330 |
-
|
| 331 |
"text-similarity-ada-001": 2046,
|
| 332 |
"text-similarity-babbage-001": 2046,
|
| 333 |
"text-similarity-curie-001": 2046,
|
| 334 |
"text-similarity-davinci-001": 2046,
|
| 335 |
-
|
| 336 |
"text-search-ada-doc-001": 2046,
|
| 337 |
"text-search-ada-query-001": 2046,
|
| 338 |
"text-search-ada-001": 2046,
|
| 339 |
"text-search-babbage-001": 2046,
|
| 340 |
"text-search-curie-001": 2046,
|
| 341 |
"text-search-davinci-001": 2046,
|
| 342 |
-
|
| 343 |
"unsup-simcse-bert-base-uncased": 512,
|
|
|
|
|
|
|
| 344 |
}
|
| 345 |
|
| 346 |
EXTERNAL_MODEL_TO_SIZE = {
|
| 347 |
-
"
|
| 348 |
-
"gtr-t5-xl": 2.48,
|
| 349 |
-
"gtr-t5-large": 0.67,
|
| 350 |
-
"gtr-t5-base": 0.22,
|
| 351 |
-
"sentence-t5-xxl": 9.73,
|
| 352 |
-
"sentence-t5-xl": 2.48,
|
| 353 |
-
"sentence-t5-large": 0.67,
|
| 354 |
-
"sentence-t5-base": 0.22,
|
| 355 |
-
"all-mpnet-base-v2": 0.44,
|
| 356 |
"all-MiniLM-L12-v2": 0.13,
|
| 357 |
"all-MiniLM-L6-v2": 0.09,
|
| 358 |
-
"
|
| 359 |
-
"
|
| 360 |
-
"
|
| 361 |
-
"msmarco-bert-co-condensor": 0.44,
|
| 362 |
-
"sup-simcse-bert-base-uncased": 0.44,
|
| 363 |
-
"unsup-simcse-bert-base-uncased": 0.44,
|
| 364 |
-
"LaBSE": 1.88,
|
| 365 |
-
"komninos": 0.27,
|
| 366 |
-
"glove.6B.300d": 0.48,
|
| 367 |
-
"allenai-specter": 0.44,
|
| 368 |
-
"bert-base-uncased": 0.44,
|
| 369 |
-
"LASER2": 0.17,
|
| 370 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
|
|
|
|
|
|
| 371 |
"distiluse-base-multilingual-cased-v2": 0.54,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
"gbert-base": 0.44,
|
| 373 |
"gbert-large": 1.35,
|
| 374 |
"gelectra-base": 0.44,
|
| 375 |
"gelectra-large": 1.34,
|
| 376 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
"xlm-roberta-large": 2.24,
|
| 378 |
-
"gottbert-base": 0.51
|
| 379 |
}
|
| 380 |
|
| 381 |
MODELS_TO_SKIP = {
|
|
@@ -413,7 +523,7 @@ def add_lang(examples):
|
|
| 413 |
|
| 414 |
def add_task(examples):
|
| 415 |
# Could be added to the dataset loading script instead
|
| 416 |
-
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM:
|
| 417 |
examples["mteb_task"] = "Classification"
|
| 418 |
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE:
|
| 419 |
examples["mteb_task"] = "Clustering"
|
|
@@ -547,6 +657,11 @@ def get_mteb_data(tasks=["Clustering"], langs=[], datasets=[], fillna=True, add_
|
|
| 547 |
out["Embedding Dimensions"], out["Sequence Length"], out["Model Size (GB)"] = get_dim_seq_size(model)
|
| 548 |
df_list.append(out)
|
| 549 |
df = pd.DataFrame(df_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
# Put 'Model' column first
|
| 551 |
cols = sorted(list(df.columns))
|
| 552 |
cols.insert(0, cols.pop(cols.index("Model")))
|
|
@@ -607,8 +722,12 @@ def get_mteb_average():
|
|
| 607 |
return DATA_OVERALL
|
| 608 |
|
| 609 |
get_mteb_average()
|
| 610 |
-
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"])
|
| 611 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 612 |
DATA_CLUSTERING_GERMAN = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
|
| 613 |
DATA_STS = get_mteb_data(["STS"])
|
| 614 |
|
|
@@ -616,7 +735,7 @@ DATA_STS = get_mteb_data(["STS"])
|
|
| 616 |
NUM_SCORES = 0
|
| 617 |
DATASETS = []
|
| 618 |
# LANGUAGES = []
|
| 619 |
-
for d in [DATA_BITEXT_MINING,
|
| 620 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
| 621 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
| 622 |
# Count number of scores including only non-nan floats & excluding the rank column
|
|
@@ -634,7 +753,7 @@ with block:
|
|
| 634 |
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> π€ Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
|
| 635 |
|
| 636 |
- **Total Datasets**: {NUM_DATASETS}
|
| 637 |
-
- **Total Languages**:
|
| 638 |
- **Total Scores**: {NUM_SCORES}
|
| 639 |
- **Total Models**: {len(DATA_OVERALL)}
|
| 640 |
""")
|
|
@@ -656,29 +775,61 @@ with block:
|
|
| 656 |
)
|
| 657 |
with gr.Row():
|
| 658 |
data_run = gr.Button("Refresh")
|
| 659 |
-
data_run.click(get_mteb_average, inputs=None, outputs=data_overall)
|
| 660 |
with gr.TabItem("Bitext Mining"):
|
| 661 |
-
with gr.
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
with gr.TabItem("Classification"):
|
| 683 |
with gr.TabItem("English"):
|
| 684 |
with gr.Row():
|
|
@@ -706,28 +857,121 @@ with block:
|
|
| 706 |
],
|
| 707 |
outputs=data_classification_en,
|
| 708 |
)
|
| 709 |
-
with gr.TabItem("
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 710 |
with gr.Row():
|
| 711 |
gr.Markdown("""
|
| 712 |
-
**Classification
|
| 713 |
|
| 714 |
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 715 |
-
- **Languages:**
|
| 716 |
""")
|
| 717 |
with gr.Row():
|
| 718 |
data_classification = gr.components.Dataframe(
|
| 719 |
-
|
| 720 |
-
datatype=["number", "markdown"] + ["number"] * len(
|
| 721 |
type="pandas",
|
| 722 |
)
|
| 723 |
with gr.Row():
|
| 724 |
data_run = gr.Button("Refresh")
|
| 725 |
task_classification = gr.Variable(value=["Classification"])
|
|
|
|
|
|
|
| 726 |
data_run.click(
|
| 727 |
get_mteb_data,
|
| 728 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 729 |
outputs=data_classification,
|
| 730 |
-
)
|
| 731 |
with gr.TabItem("Clustering"):
|
| 732 |
with gr.TabItem("English"):
|
| 733 |
with gr.Row():
|
|
@@ -756,7 +1000,7 @@ with block:
|
|
| 756 |
with gr.TabItem("German"):
|
| 757 |
with gr.Row():
|
| 758 |
gr.Markdown("""
|
| 759 |
-
**Clustering Leaderboard β¨π©πͺ**
|
| 760 |
|
| 761 |
- **Metric:** Validity Measure (v_measure)
|
| 762 |
- **Languages:** German
|
|
@@ -800,48 +1044,48 @@ with block:
|
|
| 800 |
inputs=[task_pair_classification],
|
| 801 |
outputs=data_pair_classification,
|
| 802 |
)
|
| 803 |
-
with gr.TabItem("
|
| 804 |
with gr.Row():
|
| 805 |
gr.Markdown("""
|
| 806 |
-
**
|
| 807 |
|
| 808 |
-
- **Metric:**
|
| 809 |
- **Languages:** English
|
| 810 |
""")
|
| 811 |
with gr.Row():
|
| 812 |
-
|
| 813 |
-
|
| 814 |
-
|
| 815 |
-
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
|
| 816 |
type="pandas",
|
| 817 |
)
|
| 818 |
with gr.Row():
|
| 819 |
data_run = gr.Button("Refresh")
|
| 820 |
-
|
|
|
|
| 821 |
data_run.click(
|
| 822 |
-
get_mteb_data, inputs=[
|
| 823 |
)
|
| 824 |
-
with gr.TabItem("
|
| 825 |
with gr.Row():
|
| 826 |
gr.Markdown("""
|
| 827 |
-
**
|
| 828 |
|
| 829 |
-
- **Metric:**
|
| 830 |
- **Languages:** English
|
| 831 |
""")
|
| 832 |
with gr.Row():
|
| 833 |
-
|
| 834 |
-
|
| 835 |
-
|
|
|
|
| 836 |
type="pandas",
|
| 837 |
)
|
| 838 |
with gr.Row():
|
| 839 |
data_run = gr.Button("Refresh")
|
| 840 |
-
|
| 841 |
-
metric_reranking = gr.Variable(value="map")
|
| 842 |
data_run.click(
|
| 843 |
-
get_mteb_data, inputs=[
|
| 844 |
-
)
|
| 845 |
with gr.TabItem("STS"):
|
| 846 |
with gr.TabItem("English"):
|
| 847 |
with gr.Row():
|
|
|
|
| 17 |
"Summarization",
|
| 18 |
]
|
| 19 |
|
| 20 |
+
TASK_LIST_BITEXT_MINING = ['BUCC (de-en)', 'BUCC (fr-en)', 'BUCC (ru-en)', 'BUCC (zh-en)', 'Tatoeba (afr-eng)', 'Tatoeba (amh-eng)', 'Tatoeba (ang-eng)', 'Tatoeba (ara-eng)', 'Tatoeba (arq-eng)', 'Tatoeba (arz-eng)', 'Tatoeba (ast-eng)', 'Tatoeba (awa-eng)', 'Tatoeba (aze-eng)', 'Tatoeba (bel-eng)', 'Tatoeba (ben-eng)', 'Tatoeba (ber-eng)', 'Tatoeba (bos-eng)', 'Tatoeba (bre-eng)', 'Tatoeba (bul-eng)', 'Tatoeba (cat-eng)', 'Tatoeba (cbk-eng)', 'Tatoeba (ceb-eng)', 'Tatoeba (ces-eng)', 'Tatoeba (cha-eng)', 'Tatoeba (cmn-eng)', 'Tatoeba (cor-eng)', 'Tatoeba (csb-eng)', 'Tatoeba (cym-eng)', 'Tatoeba (dan-eng)', 'Tatoeba (deu-eng)', 'Tatoeba (dsb-eng)', 'Tatoeba (dtp-eng)', 'Tatoeba (ell-eng)', 'Tatoeba (epo-eng)', 'Tatoeba (est-eng)', 'Tatoeba (eus-eng)', 'Tatoeba (fao-eng)', 'Tatoeba (fin-eng)', 'Tatoeba (fra-eng)', 'Tatoeba (fry-eng)', 'Tatoeba (gla-eng)', 'Tatoeba (gle-eng)', 'Tatoeba (glg-eng)', 'Tatoeba (gsw-eng)', 'Tatoeba (heb-eng)', 'Tatoeba (hin-eng)', 'Tatoeba (hrv-eng)', 'Tatoeba (hsb-eng)', 'Tatoeba (hun-eng)', 'Tatoeba (hye-eng)', 'Tatoeba (ido-eng)', 'Tatoeba (ile-eng)', 'Tatoeba (ina-eng)', 'Tatoeba (ind-eng)', 'Tatoeba (isl-eng)', 'Tatoeba (ita-eng)', 'Tatoeba (jav-eng)', 'Tatoeba (jpn-eng)', 'Tatoeba (kab-eng)', 'Tatoeba (kat-eng)', 'Tatoeba (kaz-eng)', 'Tatoeba (khm-eng)', 'Tatoeba (kor-eng)', 'Tatoeba (kur-eng)', 'Tatoeba (kzj-eng)', 'Tatoeba (lat-eng)', 'Tatoeba (lfn-eng)', 'Tatoeba (lit-eng)', 'Tatoeba (lvs-eng)', 'Tatoeba (mal-eng)', 'Tatoeba (mar-eng)', 'Tatoeba (max-eng)', 'Tatoeba (mhr-eng)', 'Tatoeba (mkd-eng)', 'Tatoeba (mon-eng)', 'Tatoeba (nds-eng)', 'Tatoeba (nld-eng)', 'Tatoeba (nno-eng)', 'Tatoeba (nob-eng)', 'Tatoeba (nov-eng)', 'Tatoeba (oci-eng)', 'Tatoeba (orv-eng)', 'Tatoeba (pam-eng)', 'Tatoeba (pes-eng)', 'Tatoeba (pms-eng)', 'Tatoeba (pol-eng)', 'Tatoeba (por-eng)', 'Tatoeba (ron-eng)', 'Tatoeba (rus-eng)', 'Tatoeba (slk-eng)', 'Tatoeba (slv-eng)', 'Tatoeba (spa-eng)', 'Tatoeba (sqi-eng)', 'Tatoeba (srp-eng)', 'Tatoeba (swe-eng)', 'Tatoeba (swg-eng)', 'Tatoeba (swh-eng)', 'Tatoeba (tam-eng)', 'Tatoeba (tat-eng)', 'Tatoeba (tel-eng)', 'Tatoeba (tgl-eng)', 'Tatoeba (tha-eng)', 'Tatoeba (tuk-eng)', 'Tatoeba (tur-eng)', 'Tatoeba (tzl-eng)', 'Tatoeba (uig-eng)', 'Tatoeba (ukr-eng)', 'Tatoeba (urd-eng)', 'Tatoeba (uzb-eng)', 'Tatoeba (vie-eng)', 'Tatoeba (war-eng)', 'Tatoeba (wuu-eng)', 'Tatoeba (xho-eng)', 'Tatoeba (yid-eng)', 'Tatoeba (yue-eng)', 'Tatoeba (zsm-eng)']
|
| 21 |
+
TASK_LIST_BITEXT_MINING_OTHER = ["BornholmBitextMining"]
|
| 22 |
+
|
| 23 |
TASK_LIST_CLASSIFICATION = [
|
| 24 |
"AmazonCounterfactualClassification (en)",
|
| 25 |
"AmazonPolarityClassification",
|
|
|
|
| 37 |
|
| 38 |
TASK_LIST_CLASSIFICATION_NORM = [x.replace(" (en)", "") for x in TASK_LIST_CLASSIFICATION]
|
| 39 |
|
| 40 |
+
TASK_LIST_CLASSIFICATION_DA = [
|
| 41 |
+
"AngryTweetsClassification",
|
| 42 |
+
"DanishPoliticalCommentsClassification",
|
| 43 |
+
"DKHateClassification",
|
| 44 |
+
"LccSentimentClassification",
|
| 45 |
+
"MassiveIntentClassification (da)",
|
| 46 |
+
"MassiveScenarioClassification (da)",
|
| 47 |
+
"NordicLangClassification",
|
| 48 |
+
"ScalaDaClassification",
|
| 49 |
+
]
|
| 50 |
+
|
| 51 |
+
TASK_LIST_CLASSIFICATION_NB = [
|
| 52 |
+
"NoRecClassification",
|
| 53 |
+
"NordicLangClassification",
|
| 54 |
+
"NorwegianParliament",
|
| 55 |
+
"MassiveIntentClassification (nb)",
|
| 56 |
+
"MassiveScenarioClassification (nb)",
|
| 57 |
+
"ScalaNbClassification (nb)",
|
| 58 |
+
]
|
| 59 |
+
|
| 60 |
+
TASK_LIST_CLASSIFICATION_SV = [
|
| 61 |
+
"DalajClassification",
|
| 62 |
+
"MassiveIntentClassification (sv)",
|
| 63 |
+
"MassiveScenarioClassification (sv)",
|
| 64 |
+
"NordicLangClassification",
|
| 65 |
+
"ScalaNbClassification",
|
| 66 |
+
"ScalaSvClassification",
|
| 67 |
+
"SweRecClassification",
|
| 68 |
+
]
|
| 69 |
+
|
| 70 |
+
TASK_LIST_CLASSIFICATION_OTHER = ['AmazonCounterfactualClassification (de)', 'AmazonCounterfactualClassification (ja)', 'AmazonReviewsClassification (de)', 'AmazonReviewsClassification (es)', 'AmazonReviewsClassification (fr)', 'AmazonReviewsClassification (ja)', 'AmazonReviewsClassification (zh)', 'MTOPDomainClassification (de)', 'MTOPDomainClassification (es)', 'MTOPDomainClassification (fr)', 'MTOPDomainClassification (hi)', 'MTOPDomainClassification (th)', 'MTOPIntentClassification (de)', 'MTOPIntentClassification (es)', 'MTOPIntentClassification (fr)', 'MTOPIntentClassification (hi)', 'MTOPIntentClassification (th)', 'MassiveIntentClassification (af)', 'MassiveIntentClassification (am)', 'MassiveIntentClassification (ar)', 'MassiveIntentClassification (az)', 'MassiveIntentClassification (bn)', 'MassiveIntentClassification (cy)', 'MassiveIntentClassification (de)', 'MassiveIntentClassification (el)', 'MassiveIntentClassification (es)', 'MassiveIntentClassification (fa)', 'MassiveIntentClassification (fi)', 'MassiveIntentClassification (fr)', 'MassiveIntentClassification (he)', 'MassiveIntentClassification (hi)', 'MassiveIntentClassification (hu)', 'MassiveIntentClassification (hy)', 'MassiveIntentClassification (id)', 'MassiveIntentClassification (is)', 'MassiveIntentClassification (it)', 'MassiveIntentClassification (ja)', 'MassiveIntentClassification (jv)', 'MassiveIntentClassification (ka)', 'MassiveIntentClassification (km)', 'MassiveIntentClassification (kn)', 'MassiveIntentClassification (ko)', 'MassiveIntentClassification (lv)', 'MassiveIntentClassification (ml)', 'MassiveIntentClassification (mn)', 'MassiveIntentClassification (ms)', 'MassiveIntentClassification (my)', 'MassiveIntentClassification (nl)', 'MassiveIntentClassification (pl)', 'MassiveIntentClassification (pt)', 'MassiveIntentClassification (ro)', 'MassiveIntentClassification (ru)', 'MassiveIntentClassification (sl)', 'MassiveIntentClassification (sq)', 'MassiveIntentClassification (sw)', 'MassiveIntentClassification (ta)', 'MassiveIntentClassification (te)', 'MassiveIntentClassification (th)', 'MassiveIntentClassification (tl)', 'MassiveIntentClassification (tr)', 'MassiveIntentClassification (ur)', 'MassiveIntentClassification (vi)', 'MassiveIntentClassification (zh-CN)', 'MassiveIntentClassification (zh-TW)', 'MassiveScenarioClassification (af)', 'MassiveScenarioClassification (am)', 'MassiveScenarioClassification (ar)', 'MassiveScenarioClassification (az)', 'MassiveScenarioClassification (bn)', 'MassiveScenarioClassification (cy)', 'MassiveScenarioClassification (de)', 'MassiveScenarioClassification (el)', 'MassiveScenarioClassification (es)', 'MassiveScenarioClassification (fa)', 'MassiveScenarioClassification (fi)', 'MassiveScenarioClassification (fr)', 'MassiveScenarioClassification (he)', 'MassiveScenarioClassification (hi)', 'MassiveScenarioClassification (hu)', 'MassiveScenarioClassification (hy)', 'MassiveScenarioClassification (id)', 'MassiveScenarioClassification (is)', 'MassiveScenarioClassification (it)', 'MassiveScenarioClassification (ja)', 'MassiveScenarioClassification (jv)', 'MassiveScenarioClassification (ka)', 'MassiveScenarioClassification (km)', 'MassiveScenarioClassification (kn)', 'MassiveScenarioClassification (ko)', 'MassiveScenarioClassification (lv)', 'MassiveScenarioClassification (ml)', 'MassiveScenarioClassification (mn)', 'MassiveScenarioClassification (ms)', 'MassiveScenarioClassification (my)', 'MassiveScenarioClassification (nl)', 'MassiveScenarioClassification (pl)', 'MassiveScenarioClassification (pt)', 'MassiveScenarioClassification (ro)', 'MassiveScenarioClassification (ru)', 'MassiveScenarioClassification (sl)', 'MassiveScenarioClassification (sq)', 'MassiveScenarioClassification (sw)', 'MassiveScenarioClassification (ta)', 'MassiveScenarioClassification (te)', 'MassiveScenarioClassification (th)', 'MassiveScenarioClassification (tl)', 'MassiveScenarioClassification (tr)', 'MassiveScenarioClassification (ur)', 'MassiveScenarioClassification (vi)', 'MassiveScenarioClassification (zh-CN)', 'MassiveScenarioClassification (zh-TW)']
|
| 71 |
+
|
| 72 |
TASK_LIST_CLUSTERING = [
|
| 73 |
"ArxivClusteringP2P",
|
| 74 |
"ArxivClusteringS2S",
|
|
|
|
| 83 |
"TwentyNewsgroupsClustering",
|
| 84 |
]
|
| 85 |
|
| 86 |
+
|
| 87 |
TASK_LIST_CLUSTERING_DE = [
|
| 88 |
"BlurbsClusteringP2P",
|
| 89 |
"BlurbsClusteringS2S",
|
|
|
|
| 122 |
"TRECCOVID",
|
| 123 |
]
|
| 124 |
|
| 125 |
+
TASK_LIST_RETRIEVAL_NORM = TASK_LIST_RETRIEVAL + [
|
| 126 |
+
"CQADupstackAndroidRetrieval",
|
| 127 |
"CQADupstackEnglishRetrieval",
|
| 128 |
"CQADupstackGamingRetrieval",
|
| 129 |
"CQADupstackGisRetrieval",
|
|
|
|
| 161 |
TASK_TO_METRIC = {
|
| 162 |
"BitextMining": "f1",
|
| 163 |
"Clustering": "v_measure",
|
|
|
|
| 164 |
"Classification": "accuracy",
|
| 165 |
"PairClassification": "cos_sim_ap",
|
| 166 |
"Reranking": "map",
|
|
|
|
| 179 |
|
| 180 |
# Models without metadata, thus we cannot fetch their results naturally
|
| 181 |
EXTERNAL_MODELS = [
|
|
|
|
|
|
|
| 182 |
"all-MiniLM-L12-v2",
|
| 183 |
"all-MiniLM-L6-v2",
|
| 184 |
"all-mpnet-base-v2",
|
| 185 |
"allenai-specter",
|
| 186 |
+
"bert-base-swedish-cased",
|
| 187 |
"bert-base-uncased",
|
| 188 |
"contriever-base-msmarco",
|
| 189 |
"cross-en-de-roberta-sentence-transformer",
|
| 190 |
+
"dfm-encoder-large-v1",
|
| 191 |
+
"dfm-sentence-encoder-large-1",
|
| 192 |
"distiluse-base-multilingual-cased-v2",
|
| 193 |
+
"DanskBERT",
|
| 194 |
+
"e5-base",
|
| 195 |
+
"e5-large",
|
| 196 |
+
"e5-small",
|
| 197 |
+
"electra-small-nordic",
|
| 198 |
+
"electra-small-swedish-cased-discriminator",
|
| 199 |
"gbert-base",
|
| 200 |
"gbert-large",
|
| 201 |
"gelectra-base",
|
|
|
|
| 207 |
"gtr-t5-xl",
|
| 208 |
"gtr-t5-xxl",
|
| 209 |
"komninos",
|
| 210 |
+
"LASER2",
|
| 211 |
+
"LaBSE",
|
| 212 |
"msmarco-bert-co-condensor",
|
| 213 |
+
"multilingual-e5-base",
|
| 214 |
+
"multilingual-e5-large",
|
| 215 |
+
"multilingual-e5-small",
|
| 216 |
+
"nb-bert-base",
|
| 217 |
+
"nb-bert-large",
|
| 218 |
+
"norbert3-base",
|
| 219 |
+
"norbert3-large",
|
| 220 |
"paraphrase-multilingual-MiniLM-L12-v2",
|
| 221 |
"paraphrase-multilingual-mpnet-base-v2",
|
| 222 |
+
"sentence-bert-swedish-cased",
|
| 223 |
"sentence-t5-base",
|
| 224 |
"sentence-t5-large",
|
| 225 |
"sentence-t5-xl",
|
|
|
|
| 237 |
"text-search-davinci-001",
|
| 238 |
"unsup-simcse-bert-base-uncased",
|
| 239 |
"use-cmlm-multilingual",
|
| 240 |
+
"xlm-roberta-base",
|
| 241 |
"xlm-roberta-large",
|
| 242 |
]
|
| 243 |
|
| 244 |
EXTERNAL_MODEL_TO_LINK = {
|
| 245 |
+
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 246 |
+
"allenai-specter": "https://huggingface.co/sentence-transformers/allenai-specter",
|
| 247 |
+
"all-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2",
|
| 248 |
+
"all-MiniLM-L6-v2": "https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2",
|
| 249 |
+
"all-mpnet-base-v2": "https://huggingface.co/sentence-transformers/all-mpnet-base-v2",
|
| 250 |
+
"bert-base-swedish-cased": "https://huggingface.co/KB/bert-base-swedish-cased",
|
| 251 |
+
"bert-base-uncased": "https://huggingface.co/bert-base-uncased",
|
| 252 |
+
"contriever-base-msmarco": "https://huggingface.co/nthakur/contriever-base-msmarco",
|
| 253 |
"cross-en-de-roberta-sentence-transformer": "https://huggingface.co/T-Systems-onsite/cross-en-de-roberta-sentence-transformer",
|
| 254 |
+
"DanskBERT": "https://huggingface.co/vesteinn/DanskBERT",
|
| 255 |
"distiluse-base-multilingual-cased-v2": "https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v2",
|
| 256 |
+
"dfm-encoder-large-v1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 257 |
+
"dfm-sentence-encoder-large-1": "https://huggingface.co/chcaa/dfm-encoder-large-v1",
|
| 258 |
+
"e5-base": "https://huggingface.co/intfloat/e5-base",
|
| 259 |
+
"e5-large": "https://huggingface.co/intfloat/e5-large",
|
| 260 |
+
"e5-small": "https://huggingface.co/intfloat/e5-small",
|
| 261 |
+
"electra-small-nordic": "https://huggingface.co/jonfd/electra-small-nordic",
|
| 262 |
+
"electra-small-swedish-cased-discriminator": "https://huggingface.co/KBLab/electra-small-swedish-cased-discriminator",
|
| 263 |
"gbert-base": "https://huggingface.co/deepset/gbert-base",
|
| 264 |
"gbert-large": "https://huggingface.co/deepset/gbert-large",
|
| 265 |
"gelectra-base": "https://huggingface.co/deepset/gelectra-base",
|
| 266 |
"gelectra-large": "https://huggingface.co/deepset/gelectra-large",
|
| 267 |
+
"glove.6B.300d": "https://huggingface.co/sentence-transformers/average_word_embeddings_glove.6B.300d",
|
| 268 |
"gottbert-base": "https://huggingface.co/uklfr/gottbert-base",
|
| 269 |
+
"gtr-t5-base": "https://huggingface.co/sentence-transformers/gtr-t5-base",
|
| 270 |
+
"gtr-t5-large": "https://huggingface.co/sentence-transformers/gtr-t5-large",
|
| 271 |
+
"gtr-t5-xl": "https://huggingface.co/sentence-transformers/gtr-t5-xl",
|
| 272 |
+
"gtr-t5-xxl": "https://huggingface.co/sentence-transformers/gtr-t5-xxl",
|
| 273 |
+
"komninos": "https://huggingface.co/sentence-transformers/average_word_embeddings_komninos",
|
| 274 |
"LASER2": "https://github.com/facebookresearch/LASER",
|
| 275 |
+
"LaBSE": "https://huggingface.co/sentence-transformers/LaBSE",
|
| 276 |
+
"msmarco-bert-co-condensor": "https://huggingface.co/sentence-transformers/msmarco-bert-co-condensor",
|
| 277 |
+
"multilingual-e5-base": "https://huggingface.co/intfloat/multilingual-e5-base",
|
| 278 |
+
"multilingual-e5-large": "https://huggingface.co/intfloat/multilingual-e5-large",
|
| 279 |
+
"multilingual-e5-small": "https://huggingface.co/intfloat/multilingual-e5-small",
|
| 280 |
+
"nb-bert-base": "https://huggingface.co/NbAiLab/nb-bert-base",
|
| 281 |
+
"nb-bert-large": "https://huggingface.co/NbAiLab/nb-bert-large",
|
| 282 |
+
"norbert3-base": "https://huggingface.co/ltg/norbert3-base",
|
| 283 |
+
"norbert3-large": "https://huggingface.co/ltg/norbert3-large",
|
| 284 |
+
"paraphrase-multilingual-mpnet-base-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
| 285 |
+
"paraphrase-multilingual-MiniLM-L12-v2": "https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
| 286 |
+
"sentence-bert-swedish-cased": "https://huggingface.co/KBLab/sentence-bert-swedish-cased",
|
| 287 |
+
"sentence-t5-base": "https://huggingface.co/sentence-transformers/sentence-t5-base",
|
| 288 |
+
"sentence-t5-large": "https://huggingface.co/sentence-transformers/sentence-t5-large",
|
| 289 |
+
"sentence-t5-xl": "https://huggingface.co/sentence-transformers/sentence-t5-xl",
|
| 290 |
+
"sentence-t5-xxl": "https://huggingface.co/sentence-transformers/sentence-t5-xxl",
|
| 291 |
+
"sup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/sup-simcse-bert-base-uncased",
|
| 292 |
"text-embedding-ada-002": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 293 |
"text-similarity-ada-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 294 |
"text-similarity-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
|
|
|
| 300 |
"text-search-curie-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 301 |
"text-search-babbage-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
| 302 |
"text-search-davinci-001": "https://beta.openai.com/docs/guides/embeddings/types-of-embedding-models",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
"unsup-simcse-bert-base-uncased": "https://huggingface.co/princeton-nlp/unsup-simcse-bert-base-uncased",
|
| 304 |
+
"use-cmlm-multilingual": "https://huggingface.co/sentence-transformers/use-cmlm-multilingual",
|
| 305 |
+
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base",
|
| 306 |
+
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 307 |
}
|
| 308 |
|
| 309 |
EXTERNAL_MODEL_TO_DIM = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
"all-MiniLM-L12-v2": 384,
|
| 311 |
"all-MiniLM-L6-v2": 384,
|
| 312 |
"all-mpnet-base-v2": 768,
|
| 313 |
+
"allenai-specter": 768,
|
| 314 |
+
"bert-base-swedish-cased": 768,
|
| 315 |
"bert-base-uncased": 768,
|
| 316 |
"contriever-base-msmarco": 768,
|
| 317 |
+
"cross-en-de-roberta-sentence-transformer": 768,
|
| 318 |
+
"DanskBERT": 768,
|
| 319 |
+
"distiluse-base-multilingual-cased-v2": 512,
|
| 320 |
+
"dfm-encoder-large-v1": 1024,
|
| 321 |
+
"dfm-sentence-encoder-large-1": 1024,
|
| 322 |
+
"e5-base": 768,
|
| 323 |
+
"e5-small": 384,
|
| 324 |
+
"e5-large": 1024,
|
| 325 |
+
"electra-small-nordic": 256,
|
| 326 |
+
"electra-small-swedish-cased-discriminator": 256,
|
| 327 |
+
"LASER2": 1024,
|
| 328 |
+
"LaBSE": 768,
|
| 329 |
+
"gbert-base": 768,
|
| 330 |
+
"gbert-large": 1024,
|
| 331 |
+
"gelectra-base": 768,
|
| 332 |
+
"gelectra-large": 1024,
|
| 333 |
"glove.6B.300d": 300,
|
| 334 |
+
"gottbert-base": 768,
|
| 335 |
"gtr-t5-base": 768,
|
| 336 |
"gtr-t5-large": 768,
|
| 337 |
"gtr-t5-xl": 768,
|
| 338 |
"gtr-t5-xxl": 768,
|
| 339 |
"komninos": 300,
|
| 340 |
"msmarco-bert-co-condensor": 768,
|
| 341 |
+
"multilingual-e5-base": 768,
|
| 342 |
+
"multilingual-e5-small": 384,
|
| 343 |
+
"multilingual-e5-large": 1024,
|
| 344 |
+
"nb-bert-base": 768,
|
| 345 |
+
"nb-bert-large": 1024,
|
| 346 |
+
"norbert3-base": 768,
|
| 347 |
+
"norbert3-large": 1024,
|
| 348 |
"paraphrase-multilingual-MiniLM-L12-v2": 384,
|
| 349 |
"paraphrase-multilingual-mpnet-base-v2": 768,
|
| 350 |
+
"sentence-bert-swedish-cased": 768,
|
| 351 |
"sentence-t5-base": 768,
|
| 352 |
"sentence-t5-large": 768,
|
| 353 |
"sentence-t5-xl": 768,
|
| 354 |
"sentence-t5-xxl": 768,
|
| 355 |
"sup-simcse-bert-base-uncased": 768,
|
| 356 |
+
"use-cmlm-multilingual": 768,
|
| 357 |
+
"unsup-simcse-bert-base-uncased": 768,
|
| 358 |
"text-embedding-ada-002": 1536,
|
|
|
|
| 359 |
"text-similarity-ada-001": 1024,
|
| 360 |
"text-similarity-babbage-001": 2048,
|
| 361 |
"text-similarity-curie-001": 4096,
|
| 362 |
"text-similarity-davinci-001": 12288,
|
|
|
|
| 363 |
"text-search-ada-doc-001": 1024,
|
| 364 |
"text-search-ada-query-001": 1024,
|
| 365 |
"text-search-ada-001": 1024,
|
| 366 |
"text-search-babbage-001": 2048,
|
| 367 |
"text-search-curie-001": 4096,
|
| 368 |
+
"text-search-davinci-001": 12288,
|
| 369 |
+
"xlm-roberta-base": 768,
|
| 370 |
+
"xlm-roberta-large": 1024,
|
| 371 |
}
|
| 372 |
|
| 373 |
|
| 374 |
EXTERNAL_MODEL_TO_SEQLEN = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
"all-MiniLM-L12-v2": 512,
|
| 376 |
"all-MiniLM-L6-v2": 512,
|
| 377 |
"all-mpnet-base-v2": 514,
|
| 378 |
"allenai-specter": 512,
|
| 379 |
+
"bert-base-swedish-cased": 512,
|
| 380 |
"bert-base-uncased": 512,
|
| 381 |
"contriever-base-msmarco": 512,
|
| 382 |
+
"cross-en-de-roberta-sentence-transformer": 514,
|
| 383 |
+
"DanskBERT": 514,
|
| 384 |
+
"dfm-encoder-large-v1": 512,
|
| 385 |
+
"dfm-sentence-encoder-large-1": 512,
|
| 386 |
+
"distiluse-base-multilingual-cased-v2": 512,
|
| 387 |
+
"e5-base": 512,
|
| 388 |
+
"e5-large": 512,
|
| 389 |
+
"e5-small": 512,
|
| 390 |
+
"electra-small-nordic": 512,
|
| 391 |
+
"electra-small-swedish-cased-discriminator": 512,
|
| 392 |
+
"gbert-base": 512,
|
| 393 |
+
"gbert-large": 512,
|
| 394 |
+
"gelectra-base": 512,
|
| 395 |
+
"gelectra-large": 512,
|
| 396 |
+
"gottbert-base": 512,
|
| 397 |
"glove.6B.300d": "N/A",
|
| 398 |
"gtr-t5-base": 512,
|
| 399 |
"gtr-t5-large": 512,
|
| 400 |
"gtr-t5-xl": 512,
|
| 401 |
"gtr-t5-xxl": 512,
|
| 402 |
"komninos": "N/A",
|
| 403 |
+
"LASER2": "N/A",
|
| 404 |
+
"LaBSE": 512,
|
| 405 |
"msmarco-bert-co-condensor": 512,
|
| 406 |
+
"multilingual-e5-base": 514,
|
| 407 |
+
"multilingual-e5-large": 514,
|
| 408 |
+
"multilingual-e5-small": 512,
|
| 409 |
+
"nb-bert-base": 512,
|
| 410 |
+
"nb-bert-large": 512,
|
| 411 |
+
"norbert3-base": 512,
|
| 412 |
+
"norbert3-large": 512,
|
| 413 |
"paraphrase-multilingual-MiniLM-L12-v2": 512,
|
| 414 |
"paraphrase-multilingual-mpnet-base-v2": 514,
|
| 415 |
+
"sentence-bert-swedish-cased": 512,
|
| 416 |
"sentence-t5-base": 512,
|
| 417 |
"sentence-t5-large": 512,
|
| 418 |
"sentence-t5-xl": 512,
|
| 419 |
"sentence-t5-xxl": 512,
|
| 420 |
"sup-simcse-bert-base-uncased": 512,
|
|
|
|
| 421 |
"text-embedding-ada-002": 8191,
|
|
|
|
| 422 |
"text-similarity-ada-001": 2046,
|
| 423 |
"text-similarity-babbage-001": 2046,
|
| 424 |
"text-similarity-curie-001": 2046,
|
| 425 |
"text-similarity-davinci-001": 2046,
|
|
|
|
| 426 |
"text-search-ada-doc-001": 2046,
|
| 427 |
"text-search-ada-query-001": 2046,
|
| 428 |
"text-search-ada-001": 2046,
|
| 429 |
"text-search-babbage-001": 2046,
|
| 430 |
"text-search-curie-001": 2046,
|
| 431 |
"text-search-davinci-001": 2046,
|
| 432 |
+
"use-cmlm-multilingual": 512,
|
| 433 |
"unsup-simcse-bert-base-uncased": 512,
|
| 434 |
+
"xlm-roberta-base": 514,
|
| 435 |
+
"xlm-roberta-large": 514,
|
| 436 |
}
|
| 437 |
|
| 438 |
EXTERNAL_MODEL_TO_SIZE = {
|
| 439 |
+
"allenai-specter": 0.44,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
"all-MiniLM-L12-v2": 0.13,
|
| 441 |
"all-MiniLM-L6-v2": 0.09,
|
| 442 |
+
"all-mpnet-base-v2": 0.44,
|
| 443 |
+
"bert-base-uncased": 0.44,
|
| 444 |
+
"bert-base-swedish-cased": 0.50,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 445 |
"cross-en-de-roberta-sentence-transformer": 1.11,
|
| 446 |
+
"contriever-base-msmarco": 0.44,
|
| 447 |
+
"DanskBERT": 0.50,
|
| 448 |
"distiluse-base-multilingual-cased-v2": 0.54,
|
| 449 |
+
"dfm-encoder-large-v1": 1.42,
|
| 450 |
+
"dfm-sentence-encoder-large-1": 1.63,
|
| 451 |
+
"e5-base": 0.44,
|
| 452 |
+
"e5-small": 0.13,
|
| 453 |
+
"e5-large": 1.34,
|
| 454 |
+
"electra-small-nordic": 0.09,
|
| 455 |
+
"electra-small-swedish-cased-discriminator": 0.06,
|
| 456 |
"gbert-base": 0.44,
|
| 457 |
"gbert-large": 1.35,
|
| 458 |
"gelectra-base": 0.44,
|
| 459 |
"gelectra-large": 1.34,
|
| 460 |
+
"glove.6B.300d": 0.48,
|
| 461 |
+
"gottbert-base": 0.51,
|
| 462 |
+
"gtr-t5-base": 0.22,
|
| 463 |
+
"gtr-t5-large": 0.67,
|
| 464 |
+
"gtr-t5-xl": 2.48,
|
| 465 |
+
"gtr-t5-xxl": 9.73,
|
| 466 |
+
"komninos": 0.27,
|
| 467 |
+
"LASER2": 0.17,
|
| 468 |
+
"LaBSE": 1.88,
|
| 469 |
+
"msmarco-bert-co-condensor": 0.44,
|
| 470 |
+
"multilingual-e5-base": 1.11,
|
| 471 |
+
"multilingual-e5-small": 0.47,
|
| 472 |
+
"multilingual-e5-large": 2.24,
|
| 473 |
+
"nb-bert-base": 0.71,
|
| 474 |
+
"nb-bert-large": 1.42,
|
| 475 |
+
"norbert3-base": 0.52,
|
| 476 |
+
"norbert3-large": 1.47,
|
| 477 |
+
"paraphrase-multilingual-mpnet-base-v2": 1.11,
|
| 478 |
+
"paraphrase-multilingual-MiniLM-L12-v2": 0.47,
|
| 479 |
+
"sentence-bert-swedish-cased": 0.50,
|
| 480 |
+
"sentence-t5-base": 0.22,
|
| 481 |
+
"sentence-t5-large": 0.67,
|
| 482 |
+
"sentence-t5-xl": 2.48,
|
| 483 |
+
"sentence-t5-xxl": 9.73,
|
| 484 |
+
"sup-simcse-bert-base-uncased": 0.44,
|
| 485 |
+
"unsup-simcse-bert-base-uncased": 0.44,
|
| 486 |
+
"use-cmlm-multilingual": 1.89,
|
| 487 |
+
"xlm-roberta-base": 1.12,
|
| 488 |
"xlm-roberta-large": 2.24,
|
|
|
|
| 489 |
}
|
| 490 |
|
| 491 |
MODELS_TO_SKIP = {
|
|
|
|
| 523 |
|
| 524 |
def add_task(examples):
|
| 525 |
# Could be added to the dataset loading script instead
|
| 526 |
+
if examples["mteb_dataset_name"] in TASK_LIST_CLASSIFICATION_NORM + TASK_LIST_CLASSIFICATION_DA + TASK_LIST_CLASSIFICATION_SV + TASK_LIST_CLASSIFICATION_NB:
|
| 527 |
examples["mteb_task"] = "Classification"
|
| 528 |
elif examples["mteb_dataset_name"] in TASK_LIST_CLUSTERING + TASK_LIST_CLUSTERING_DE:
|
| 529 |
examples["mteb_task"] = "Clustering"
|
|
|
|
| 657 |
out["Embedding Dimensions"], out["Sequence Length"], out["Model Size (GB)"] = get_dim_seq_size(model)
|
| 658 |
df_list.append(out)
|
| 659 |
df = pd.DataFrame(df_list)
|
| 660 |
+
# If there are any models that are the same, merge them
|
| 661 |
+
# E.g. if out["Model"] has the same value in two places, merge & take whichever one is not NaN else just take the first one
|
| 662 |
+
# Save to csv
|
| 663 |
+
df.to_csv("mteb.csv", index=False)
|
| 664 |
+
df = df.groupby("Model", as_index=False).first()
|
| 665 |
# Put 'Model' column first
|
| 666 |
cols = sorted(list(df.columns))
|
| 667 |
cols.insert(0, cols.pop(cols.index("Model")))
|
|
|
|
| 722 |
return DATA_OVERALL
|
| 723 |
|
| 724 |
get_mteb_average()
|
| 725 |
+
DATA_BITEXT_MINING = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING)
|
| 726 |
+
DATA_BITEXT_MINING_OTHER = get_mteb_data(["BitextMining"], [], TASK_LIST_BITEXT_MINING_OTHER)
|
| 727 |
+
DATA_CLASSIFICATION_DA = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_DA)
|
| 728 |
+
DATA_CLASSIFICATION_NB = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_NB)
|
| 729 |
+
DATA_CLASSIFICATION_SV = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_SV)
|
| 730 |
+
DATA_CLASSIFICATION_OTHER = get_mteb_data(["Classification"], [], TASK_LIST_CLASSIFICATION_OTHER)
|
| 731 |
DATA_CLUSTERING_GERMAN = get_mteb_data(["Clustering"], [], TASK_LIST_CLUSTERING_DE)
|
| 732 |
DATA_STS = get_mteb_data(["STS"])
|
| 733 |
|
|
|
|
| 735 |
NUM_SCORES = 0
|
| 736 |
DATASETS = []
|
| 737 |
# LANGUAGES = []
|
| 738 |
+
for d in [DATA_BITEXT_MINING, DATA_BITEXT_MINING_OTHER, DATA_CLASSIFICATION_EN, DATA_CLASSIFICATION_DA, DATA_CLASSIFICATION_NB, DATA_CLASSIFICATION_SV, DATA_CLASSIFICATION_OTHER, DATA_CLUSTERING, DATA_CLUSTERING_GERMAN, DATA_PAIR_CLASSIFICATION, DATA_RERANKING, DATA_RETRIEVAL, DATA_STS, DATA_SUMMARIZATION]:
|
| 739 |
# NUM_SCORES += d.iloc[:, 1:].apply(lambda x: sum([1 for y in x if isinstance(y, float) and not np.isnan(y)]), axis=1).sum()
|
| 740 |
cols_to_ignore = 3 if "Average" in d.columns else 2
|
| 741 |
# Count number of scores including only non-nan floats & excluding the rank column
|
|
|
|
| 753 |
Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the <a href="https://github.com/embeddings-benchmark/mteb#leaderboard" target="_blank" style="text-decoration: underline">MTEB GitHub repository</a> π€ Refer to the [MTEB paper](https://arxiv.org/abs/2210.07316) for details on metrics, tasks and models.
|
| 754 |
|
| 755 |
- **Total Datasets**: {NUM_DATASETS}
|
| 756 |
+
- **Total Languages**: 113
|
| 757 |
- **Total Scores**: {NUM_SCORES}
|
| 758 |
- **Total Models**: {len(DATA_OVERALL)}
|
| 759 |
""")
|
|
|
|
| 775 |
)
|
| 776 |
with gr.Row():
|
| 777 |
data_run = gr.Button("Refresh")
|
| 778 |
+
data_run.click(get_mteb_average, inputs=None, outputs=data_overall)
|
| 779 |
with gr.TabItem("Bitext Mining"):
|
| 780 |
+
with gr.TabItem("English-X"):
|
| 781 |
+
with gr.Row():
|
| 782 |
+
gr.Markdown("""
|
| 783 |
+
**Bitext Mining Leaderboard π΄σ §σ ’σ ³σ £σ ΄σ Ώ**
|
| 784 |
+
|
| 785 |
+
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
| 786 |
+
- **Languages:** 117 (Pairs of: English & other language)
|
| 787 |
+
""")
|
| 788 |
+
with gr.Row():
|
| 789 |
+
data_bitext_mining = gr.components.Dataframe(
|
| 790 |
+
DATA_BITEXT_MINING,
|
| 791 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING.columns),
|
| 792 |
+
type="pandas",
|
| 793 |
+
)
|
| 794 |
+
with gr.Row():
|
| 795 |
+
data_run = gr.Button("Refresh")
|
| 796 |
+
task_bitext_mining = gr.Variable(value=["BitextMining"])
|
| 797 |
+
lang_bitext_mining_other = gr.Variable(value=[])
|
| 798 |
+
datasets_bitext_mining_other = gr.Variable(value=TASK_LIST_BITEXT_MINING)
|
| 799 |
+
data_run.click(
|
| 800 |
+
get_mteb_data,
|
| 801 |
+
inputs=[task_bitext_mining, lang_bitext_mining_other, datasets_bitext_mining_other],
|
| 802 |
+
outputs=data_bitext_mining,
|
| 803 |
+
)
|
| 804 |
+
with gr.TabItem("Other"):
|
| 805 |
+
with gr.Row():
|
| 806 |
+
gr.Markdown("""
|
| 807 |
+
**Bitext Mining Other Leaderboard π**
|
| 808 |
+
|
| 809 |
+
- **Metric:** [F1](https://huggingface.co/spaces/evaluate-metric/f1)
|
| 810 |
+
- **Languages:** 2 (Pair of: Danish & Bornholmsk)
|
| 811 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen)
|
| 812 |
+
""")
|
| 813 |
+
with gr.Row():
|
| 814 |
+
data_bitext_mining_other = gr.components.Dataframe(
|
| 815 |
+
DATA_BITEXT_MINING_OTHER,
|
| 816 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_BITEXT_MINING_OTHER.columns),
|
| 817 |
+
type="pandas",
|
| 818 |
+
)
|
| 819 |
+
with gr.Row():
|
| 820 |
+
data_run = gr.Button("Refresh")
|
| 821 |
+
task_bitext_mining_other = gr.Variable(value=["BitextMining"])
|
| 822 |
+
lang_bitext_mining_other = gr.Variable(value=[])
|
| 823 |
+
datasets_bitext_mining_other = gr.Variable(value=TASK_LIST_BITEXT_MINING_OTHER)
|
| 824 |
+
data_run.click(
|
| 825 |
+
get_mteb_data,
|
| 826 |
+
inputs=[
|
| 827 |
+
task_bitext_mining_other,
|
| 828 |
+
lang_bitext_mining_other,
|
| 829 |
+
datasets_bitext_mining_other,
|
| 830 |
+
],
|
| 831 |
+
outputs=data_bitext_mining_other,
|
| 832 |
+
)
|
| 833 |
with gr.TabItem("Classification"):
|
| 834 |
with gr.TabItem("English"):
|
| 835 |
with gr.Row():
|
|
|
|
| 857 |
],
|
| 858 |
outputs=data_classification_en,
|
| 859 |
)
|
| 860 |
+
with gr.TabItem("Danish"):
|
| 861 |
+
with gr.Row():
|
| 862 |
+
gr.Markdown("""
|
| 863 |
+
**Classification Danish Leaderboard π€π©π°**
|
| 864 |
+
|
| 865 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 866 |
+
- **Languages:** Danish
|
| 867 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen)
|
| 868 |
+
""")
|
| 869 |
+
with gr.Row():
|
| 870 |
+
data_classification_da = gr.components.Dataframe(
|
| 871 |
+
DATA_CLASSIFICATION_DA,
|
| 872 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_DA.columns),
|
| 873 |
+
type="pandas",
|
| 874 |
+
)
|
| 875 |
+
with gr.Row():
|
| 876 |
+
data_run_classification_da = gr.Button("Refresh")
|
| 877 |
+
task_classification_da = gr.Variable(value=["Classification"])
|
| 878 |
+
lang_classification_da = gr.Variable(value=[])
|
| 879 |
+
datasets_classification_da = gr.Variable(value=TASK_LIST_CLASSIFICATION_DA)
|
| 880 |
+
data_run_classification_da.click(
|
| 881 |
+
get_mteb_data,
|
| 882 |
+
inputs=[
|
| 883 |
+
task_classification_da,
|
| 884 |
+
lang_classification_da,
|
| 885 |
+
datasets_classification_da,
|
| 886 |
+
],
|
| 887 |
+
outputs=data_classification_da,
|
| 888 |
+
)
|
| 889 |
+
with gr.TabItem("Norwegian"):
|
| 890 |
+
with gr.Row():
|
| 891 |
+
gr.Markdown("""
|
| 892 |
+
**Classification Norwegian Leaderboard ππ³π΄**
|
| 893 |
+
|
| 894 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 895 |
+
- **Languages:** Norwegian BokmΓ₯l
|
| 896 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen)
|
| 897 |
+
""")
|
| 898 |
+
with gr.Row():
|
| 899 |
+
data_classification_nb = gr.components.Dataframe(
|
| 900 |
+
DATA_CLASSIFICATION_NB,
|
| 901 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_NB.columns),
|
| 902 |
+
type="pandas",
|
| 903 |
+
)
|
| 904 |
+
with gr.Row():
|
| 905 |
+
data_run_classification_nb = gr.Button("Refresh")
|
| 906 |
+
task_classification_nb = gr.Variable(value=["Classification"])
|
| 907 |
+
lang_classification_nb = gr.Variable(value=[])
|
| 908 |
+
datasets_classification_nb = gr.Variable(value=TASK_LIST_CLASSIFICATION_NB)
|
| 909 |
+
data_run_classification_nb.click(
|
| 910 |
+
get_mteb_data,
|
| 911 |
+
inputs=[
|
| 912 |
+
task_classification_nb,
|
| 913 |
+
lang_classification_nb,
|
| 914 |
+
datasets_classification_nb,
|
| 915 |
+
],
|
| 916 |
+
outputs=data_classification_nb,
|
| 917 |
+
)
|
| 918 |
+
with gr.TabItem("Swedish"):
|
| 919 |
+
with gr.Row():
|
| 920 |
+
gr.Markdown("""
|
| 921 |
+
**Classification Swedish Leaderboard ππΈπͺ**
|
| 922 |
+
|
| 923 |
+
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 924 |
+
- **Languages:** Swedish
|
| 925 |
+
- **Credits:** [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen)
|
| 926 |
+
""")
|
| 927 |
+
with gr.Row():
|
| 928 |
+
data_classification_sv = gr.components.Dataframe(
|
| 929 |
+
DATA_CLASSIFICATION_SV,
|
| 930 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_SV.columns),
|
| 931 |
+
type="pandas",
|
| 932 |
+
)
|
| 933 |
+
with gr.Row():
|
| 934 |
+
data_run_classification_sv = gr.Button("Refresh")
|
| 935 |
+
task_classification_sv = gr.Variable(value=["Classification"])
|
| 936 |
+
lang_classification_sv = gr.Variable(value=[])
|
| 937 |
+
datasets_classification_sv = gr.Variable(value=TASK_LIST_CLASSIFICATION_SV)
|
| 938 |
+
data_run_classification_sv.click(
|
| 939 |
+
get_mteb_data,
|
| 940 |
+
inputs=[
|
| 941 |
+
task_classification_sv,
|
| 942 |
+
lang_classification_sv,
|
| 943 |
+
datasets_classification_sv,
|
| 944 |
+
],
|
| 945 |
+
outputs=data_classification_sv,
|
| 946 |
+
)
|
| 947 |
+
with gr.TabItem("Other"):
|
| 948 |
with gr.Row():
|
| 949 |
gr.Markdown("""
|
| 950 |
+
**Classification Other Languages Leaderboard πππ**
|
| 951 |
|
| 952 |
- **Metric:** [Accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy)
|
| 953 |
+
- **Languages:** 47 (Only languages not included in the other tabs)
|
| 954 |
""")
|
| 955 |
with gr.Row():
|
| 956 |
data_classification = gr.components.Dataframe(
|
| 957 |
+
DATA_CLASSIFICATION_OTHER,
|
| 958 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_CLASSIFICATION_OTHER) * 10,
|
| 959 |
type="pandas",
|
| 960 |
)
|
| 961 |
with gr.Row():
|
| 962 |
data_run = gr.Button("Refresh")
|
| 963 |
task_classification = gr.Variable(value=["Classification"])
|
| 964 |
+
lang_classification = gr.Variable(value=[])
|
| 965 |
+
datasets_classification = gr.Variable(value=TASK_LIST_CLASSIFICATION_OTHER)
|
| 966 |
data_run.click(
|
| 967 |
get_mteb_data,
|
| 968 |
+
inputs=[
|
| 969 |
+
task_classification,
|
| 970 |
+
lang_classification,
|
| 971 |
+
datasets_classification,
|
| 972 |
+
],
|
| 973 |
outputs=data_classification,
|
| 974 |
+
)
|
| 975 |
with gr.TabItem("Clustering"):
|
| 976 |
with gr.TabItem("English"):
|
| 977 |
with gr.Row():
|
|
|
|
| 1000 |
with gr.TabItem("German"):
|
| 1001 |
with gr.Row():
|
| 1002 |
gr.Markdown("""
|
| 1003 |
+
**Clustering German Leaderboard β¨π©πͺ**
|
| 1004 |
|
| 1005 |
- **Metric:** Validity Measure (v_measure)
|
| 1006 |
- **Languages:** German
|
|
|
|
| 1044 |
inputs=[task_pair_classification],
|
| 1045 |
outputs=data_pair_classification,
|
| 1046 |
)
|
| 1047 |
+
with gr.TabItem("Reranking"):
|
| 1048 |
with gr.Row():
|
| 1049 |
gr.Markdown("""
|
| 1050 |
+
**Reranking Leaderboard π₯**
|
| 1051 |
|
| 1052 |
+
- **Metric:** Mean Average Precision (MAP)
|
| 1053 |
- **Languages:** English
|
| 1054 |
""")
|
| 1055 |
with gr.Row():
|
| 1056 |
+
data_reranking = gr.components.Dataframe(
|
| 1057 |
+
DATA_RERANKING,
|
| 1058 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RERANKING.columns),
|
|
|
|
| 1059 |
type="pandas",
|
| 1060 |
)
|
| 1061 |
with gr.Row():
|
| 1062 |
data_run = gr.Button("Refresh")
|
| 1063 |
+
task_reranking = gr.Variable(value=["Reranking"])
|
| 1064 |
+
metric_reranking = gr.Variable(value="map")
|
| 1065 |
data_run.click(
|
| 1066 |
+
get_mteb_data, inputs=[task_reranking], outputs=data_reranking
|
| 1067 |
)
|
| 1068 |
+
with gr.TabItem("Retrieval"):
|
| 1069 |
with gr.Row():
|
| 1070 |
gr.Markdown("""
|
| 1071 |
+
**Retrieval Leaderboard π**
|
| 1072 |
|
| 1073 |
+
- **Metric:** Normalized Discounted Cumulative Gain @ k (ndcg_at_10)
|
| 1074 |
- **Languages:** English
|
| 1075 |
""")
|
| 1076 |
with gr.Row():
|
| 1077 |
+
data_retrieval = gr.components.Dataframe(
|
| 1078 |
+
DATA_RETRIEVAL,
|
| 1079 |
+
# Add support for more columns than existing as a buffer for CQADupstack & other Retrieval tasks (e.g. MSMARCOv2)
|
| 1080 |
+
datatype=["number", "markdown"] + ["number"] * len(DATA_RETRIEVAL.columns) * 2,
|
| 1081 |
type="pandas",
|
| 1082 |
)
|
| 1083 |
with gr.Row():
|
| 1084 |
data_run = gr.Button("Refresh")
|
| 1085 |
+
task_retrieval = gr.Variable(value=["Retrieval"])
|
|
|
|
| 1086 |
data_run.click(
|
| 1087 |
+
get_mteb_data, inputs=[task_retrieval], outputs=data_retrieval
|
| 1088 |
+
)
|
| 1089 |
with gr.TabItem("STS"):
|
| 1090 |
with gr.TabItem("English"):
|
| 1091 |
with gr.Row():
|