Spaces:
Sleeping
Sleeping
| # set path | |
| import glob, os, sys; | |
| sys.path.append('../utils') | |
| #import needed libraries | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import pandas as pd | |
| import streamlit as st | |
| from utils.vulnerability_classifier import load_vulnerabilityClassifier, vulnerability_classification | |
| import logging | |
| logger = logging.getLogger(__name__) | |
| from utils.config import get_classifier_params | |
| from utils.preprocessing import paraLengthCheck | |
| from io import BytesIO | |
| import xlsxwriter | |
| import plotly.express as px | |
| from utils.vulnerability_classifier import label_dict | |
| # Declare all the necessary variables | |
| classifier_identifier = 'vulnerability' | |
| params = get_classifier_params(classifier_identifier) | |
| def to_excel(df,sectorlist): | |
| len_df = len(df) | |
| output = BytesIO() | |
| writer = pd.ExcelWriter(output, engine='xlsxwriter') | |
| df.to_excel(writer, index=False, sheet_name='Sheet1') | |
| workbook = writer.book | |
| worksheet = writer.sheets['Sheet1'] | |
| worksheet.data_validation('S2:S{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': ['No', 'Yes', 'Discard']}) | |
| worksheet.data_validation('X2:X{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| worksheet.data_validation('T2:T{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| worksheet.data_validation('U2:U{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| worksheet.data_validation('V2:V{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| worksheet.data_validation('W2:U{}'.format(len_df), | |
| {'validate': 'list', | |
| 'source': sectorlist + ['Blank']}) | |
| writer.save() | |
| processed_data = output.getvalue() | |
| return processed_data | |
| def app(): | |
| ### Main app code ### | |
| with st.container(): | |
| # If a document has been processed | |
| if 'key0' in st.session_state: | |
| # Run vulnerability classifier | |
| df = st.session_state.key0 | |
| classifier = load_vulnerabilityClassifier(classifier_name=params['model_name']) | |
| st.session_state['{}_classifier'.format(classifier_identifier)] = classifier | |
| # Get the predictions | |
| df = vulnerability_classification(haystack_doc=df, | |
| threshold= params['threshold']) | |
| # Store df in session state with key1 | |
| st.session_state.key1 = df | |
| def vulnerability_display(): | |
| # Assign dataframe a name | |
| df_vul = st.session_state['key0'] | |
| #st.write(df_vul) | |
| # Header | |
| st.subheader("Explore references to vulnerable groups:") | |
| col1, col2 = st.columns([1,1]) | |
| with col1: | |
| # Text | |
| num_paragraphs = len(df_vul['Vulnerability Label']) | |
| num_references = df_vul['Vulnerability Label'].apply(lambda x: 'Other' not in x).sum() | |
| st.markdown(f"""<div style="text-align: justify;"> The document contains a | |
| total of <span style="color: red;">{num_paragraphs}</span> paragraphs. | |
| We identified <span style="color: red;">{num_references}</span> | |
| references to groups in vulnerable situations.</div> | |
| <br> | |
| In the chart on the right you can see how often each group has been references. | |
| For a more detailed view in the text, see the paragraphs and | |
| their respective labels in the table below.</div>""", unsafe_allow_html=True) | |
| with col2: | |
| ### Bar chart | |
| # # Create a df that stores all the labels | |
| df_labels = pd.DataFrame(list(label_dict.items()), columns=['Label ID', 'Label']) | |
| # Count how often each label appears in the "Vulnerability Labels" column | |
| group_counts = {} | |
| # Iterate through each sublist | |
| for index, row in df_vul.iterrows(): | |
| # Iterate through each group in the sublist | |
| for sublist in row['Vulnerability Label']: | |
| # Update the count in the dictionary | |
| group_counts[sublist] = group_counts.get(sublist, 0) + 1 | |
| # Create a new dataframe from group_counts | |
| df_label_count = pd.DataFrame(list(group_counts.items()), columns=['Label', 'Count']) | |
| # Merge the label counts with the df_label DataFrame | |
| df_label_count = df_labels.merge(df_label_count, on='Label', how='left') | |
| # Exclude the "Other" group | |
| df_bar_chart = df_label_count[df_label_count['Label'] != 'Other'] | |
| # Bar chart | |
| fig = px.bar(df_bar_chart, | |
| x='Label', | |
| y='Count', | |
| title='How many references have been found for each group?', | |
| labels={'Count': 'Frequency'}) | |
| #Show plot | |
| st.plotly_chart(fig, use_container_width=True) | |
| # ### Table | |
| st.write(df_vul[df_vul['Vulnerability Label'].apply(lambda x: 'Other' not in x)]) | |