Spaces:
Sleeping
Sleeping
Upload appStore_target.py
Browse files- appStore/appStore_target.py +397 -0
appStore/appStore_target.py
ADDED
|
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# set path
|
| 2 |
+
import glob, os, sys;
|
| 3 |
+
sys.path.append('../utils')
|
| 4 |
+
|
| 5 |
+
#import needed libraries
|
| 6 |
+
import seaborn as sns
|
| 7 |
+
import matplotlib.pyplot as plt
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from st_aggrid import AgGrid
|
| 12 |
+
from utils.target_classifier import load_targetClassifier, target_classification
|
| 13 |
+
import logging
|
| 14 |
+
logger = logging.getLogger(__name__)
|
| 15 |
+
from utils.config import get_classifier_params
|
| 16 |
+
from io import BytesIO
|
| 17 |
+
import xlsxwriter
|
| 18 |
+
import plotly.express as px
|
| 19 |
+
from pandas.api.types import (
|
| 20 |
+
is_categorical_dtype,
|
| 21 |
+
is_datetime64_any_dtype,
|
| 22 |
+
is_numeric_dtype,
|
| 23 |
+
is_object_dtype,
|
| 24 |
+
is_list_like)
|
| 25 |
+
|
| 26 |
+
# Declare all the necessary variables
|
| 27 |
+
classifier_identifier = 'target'
|
| 28 |
+
params = get_classifier_params(classifier_identifier)
|
| 29 |
+
|
| 30 |
+
## Labels dictionary ###
|
| 31 |
+
_lab_dict = {
|
| 32 |
+
'NEGATIVE':'NO TARGET INFO',
|
| 33 |
+
'TARGET':'TARGET',
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
# @st.cache_data
|
| 37 |
+
def to_excel(df):
|
| 38 |
+
# df['Target Validation'] = 'No'
|
| 39 |
+
# df['Netzero Validation'] = 'No'
|
| 40 |
+
# df['GHG Validation'] = 'No'
|
| 41 |
+
# df['Adapt-Mitig Validation'] = 'No'
|
| 42 |
+
# df['Sector'] = 'No'
|
| 43 |
+
len_df = len(df)
|
| 44 |
+
output = BytesIO()
|
| 45 |
+
writer = pd.ExcelWriter(output, engine='xlsxwriter')
|
| 46 |
+
df.to_excel(writer, index=False, sheet_name='rawdata')
|
| 47 |
+
if 'target_hits' in st.session_state:
|
| 48 |
+
target_hits = st.session_state['target_hits']
|
| 49 |
+
if 'keep' in target_hits.columns:
|
| 50 |
+
|
| 51 |
+
target_hits = target_hits[target_hits.keep == True]
|
| 52 |
+
target_hits = target_hits.reset_index(drop=True)
|
| 53 |
+
target_hits.drop(columns = ['keep'], inplace=True)
|
| 54 |
+
target_hits.to_excel(writer,index=False,sheet_name = 'Target')
|
| 55 |
+
else:
|
| 56 |
+
|
| 57 |
+
target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
|
| 58 |
+
target_hits = target_hits.reset_index(drop=True)
|
| 59 |
+
target_hits.to_excel(writer,index=False,sheet_name = 'Target')
|
| 60 |
+
|
| 61 |
+
else:
|
| 62 |
+
target_hits = df[df['Target Label'] == True]
|
| 63 |
+
target_hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
|
| 64 |
+
'Action Score','Policies_Plans Label','Indicator Label',
|
| 65 |
+
'Policies_Plans Score','Conditional Score'],inplace=True)
|
| 66 |
+
target_hits = target_hits.sort_values(by=['Target Score'], ascending=False)
|
| 67 |
+
target_hits = target_hits.reset_index(drop=True)
|
| 68 |
+
target_hits.to_excel(writer,index=False,sheet_name = 'Target')
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
if 'action_hits' in st.session_state:
|
| 72 |
+
action_hits = st.session_state['action_hits']
|
| 73 |
+
if 'keep' in action_hits.columns:
|
| 74 |
+
action_hits = action_hits[action_hits.keep == True]
|
| 75 |
+
action_hits = action_hits.reset_index(drop=True)
|
| 76 |
+
action_hits.drop(columns = ['keep'], inplace=True)
|
| 77 |
+
action_hits.to_excel(writer,index=False,sheet_name = 'Action')
|
| 78 |
+
else:
|
| 79 |
+
action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
|
| 80 |
+
action_hits = action_hits.reset_index(drop=True)
|
| 81 |
+
action_hits.to_excel(writer,index=False,sheet_name = 'Action')
|
| 82 |
+
else:
|
| 83 |
+
action_hits = df[df['Action Label'] == True]
|
| 84 |
+
action_hits.drop(columns=['Target Label','Target Score','Netzero Score',
|
| 85 |
+
'Netzero Label','GHG Label',
|
| 86 |
+
'GHG Score','Action Label','Policies_Plans Label',
|
| 87 |
+
'Policies_Plans Score','Conditional Score'],inplace=True)
|
| 88 |
+
action_hits = action_hits.sort_values(by=['Action Score'], ascending=False)
|
| 89 |
+
action_hits = action_hits.reset_index(drop=True)
|
| 90 |
+
action_hits.to_excel(writer,index=False,sheet_name = 'Action')
|
| 91 |
+
|
| 92 |
+
# hits = hits.drop(columns = ['Target Score','Netzero Score','GHG Score'])
|
| 93 |
+
workbook = writer.book
|
| 94 |
+
# worksheet = writer.sheets['Sheet1']
|
| 95 |
+
# worksheet.data_validation('L2:L{}'.format(len_df),
|
| 96 |
+
# {'validate': 'list',
|
| 97 |
+
# 'source': ['No', 'Yes', 'Discard']})
|
| 98 |
+
# worksheet.data_validation('M2:L{}'.format(len_df),
|
| 99 |
+
# {'validate': 'list',
|
| 100 |
+
# 'source': ['No', 'Yes', 'Discard']})
|
| 101 |
+
# worksheet.data_validation('N2:L{}'.format(len_df),
|
| 102 |
+
# {'validate': 'list',
|
| 103 |
+
# 'source': ['No', 'Yes', 'Discard']})
|
| 104 |
+
# worksheet.data_validation('O2:L{}'.format(len_df),
|
| 105 |
+
# {'validate': 'list',
|
| 106 |
+
# 'source': ['No', 'Yes', 'Discard']})
|
| 107 |
+
# worksheet.data_validation('P2:L{}'.format(len_df),
|
| 108 |
+
# {'validate': 'list',
|
| 109 |
+
# 'source': ['No', 'Yes', 'Discard']})
|
| 110 |
+
writer.save()
|
| 111 |
+
processed_data = output.getvalue()
|
| 112 |
+
return processed_data
|
| 113 |
+
|
| 114 |
+
def app():
|
| 115 |
+
### Main app code ###
|
| 116 |
+
with st.container():
|
| 117 |
+
if 'key0' in st.session_state:
|
| 118 |
+
df = st.session_state.key0
|
| 119 |
+
|
| 120 |
+
#load Classifier
|
| 121 |
+
classifier = load_targetClassifier(classifier_name=params['model_name'])
|
| 122 |
+
st.session_state['{}_classifier'.format(classifier_identifier)] = classifier
|
| 123 |
+
if len(df) > 100:
|
| 124 |
+
warning_msg = ": This might take sometime, please sit back and relax."
|
| 125 |
+
else:
|
| 126 |
+
warning_msg = ""
|
| 127 |
+
|
| 128 |
+
df = target_classification(haystack_doc=df,
|
| 129 |
+
threshold= params['threshold'])
|
| 130 |
+
st.session_state.key1 = df
|
| 131 |
+
|
| 132 |
+
def filter_for_tracs(df):
|
| 133 |
+
sector_list = ['Transport','Energy','Economy-wide']
|
| 134 |
+
df['check'] = df['Sector Label'].apply(lambda x: any(i in x for i in sector_list))
|
| 135 |
+
df = df[df.check == True].reset_index(drop=True)
|
| 136 |
+
df['Sector Label'] = df['Sector Label'].apply(lambda x: [i for i in x if i in sector_list])
|
| 137 |
+
df.drop(columns = ['check'],inplace=True)
|
| 138 |
+
return df
|
| 139 |
+
|
| 140 |
+
def target_display():
|
| 141 |
+
if 'key1' in st.session_state:
|
| 142 |
+
df = st.session_state.key1
|
| 143 |
+
st.caption(""" **{}** is splitted into **{}** paragraphs/text chunks."""\
|
| 144 |
+
.format(os.path.basename(st.session_state['filename']),
|
| 145 |
+
len(df)))
|
| 146 |
+
hits = df[df['Target Label'] == 'TARGET'].reset_index(drop=True)
|
| 147 |
+
range_val = min(5,len(hits))
|
| 148 |
+
if range_val !=0:
|
| 149 |
+
# collecting some statistics
|
| 150 |
+
count_target = sum(hits['Target Label'] == 'TARGET')
|
| 151 |
+
count_netzero = sum(hits['Netzero Label'] == 'NETZERO TARGET')
|
| 152 |
+
count_ghg = sum(hits['GHG Label'] == 'GHG')
|
| 153 |
+
count_transport = sum([True if 'Transport' in x else False
|
| 154 |
+
for x in hits['Sector Label']])
|
| 155 |
+
|
| 156 |
+
c1, c2 = st.columns([1,1])
|
| 157 |
+
with c1:
|
| 158 |
+
st.write('**Target Paragraphs**: `{}`'.format(count_target))
|
| 159 |
+
st.write('**NetZero Related Paragraphs**: `{}`'.format(count_netzero))
|
| 160 |
+
with c2:
|
| 161 |
+
st.write('**GHG Target Related Paragraphs**: `{}`'.format(count_ghg))
|
| 162 |
+
st.write('**Transport Related Paragraphs**: `{}`'.format(count_transport))
|
| 163 |
+
# st.write('-------------------')
|
| 164 |
+
hits.drop(columns=['Target Label','Netzero Score','GHG Score','Action Label',
|
| 165 |
+
'Action Score','Policies_Plans Label','Indicator Label',
|
| 166 |
+
'Policies_Plans Score','Conditional Score'],inplace=True)
|
| 167 |
+
hits = hits.sort_values(by=['Target Score'], ascending=False)
|
| 168 |
+
hits = hits.reset_index(drop=True)
|
| 169 |
+
|
| 170 |
+
# netzerohit = hits[hits['Netzero Label'] == 'NETZERO']
|
| 171 |
+
# if not netzerohit.empty:
|
| 172 |
+
# netzerohit = netzerohit.sort_values(by = ['Netzero Score'], ascending = False)
|
| 173 |
+
# # st.write('-------------------')
|
| 174 |
+
# # st.markdown("###### Netzero paragraph ######")
|
| 175 |
+
# st.write('**Netzero paragraph** `page {}`: {}'.format(netzerohit.iloc[0]['page'],
|
| 176 |
+
# netzerohit.iloc[0]['text'].replace("\n", " ")))
|
| 177 |
+
# st.write("")
|
| 178 |
+
# else:
|
| 179 |
+
# st.info("🤔 No Netzero paragraph found")
|
| 180 |
+
|
| 181 |
+
# # st.write("**Result {}** `page {}` (Relevancy Score: {:.2f})'".format(i+1,hits.iloc[i]['page'],hits.iloc[i]['Relevancy'])")
|
| 182 |
+
# st.write('-------------------')
|
| 183 |
+
# st.markdown("###### Top few Target Classified paragraph/text results ######")
|
| 184 |
+
# range_val = min(5,len(hits))
|
| 185 |
+
# for i in range(range_val):
|
| 186 |
+
# # the page number reflects the page that contains the main paragraph
|
| 187 |
+
# # according to split limit, the overlapping part can be on a separate page
|
| 188 |
+
# st.write('**Result {}** (Relevancy Score: {:.2f}): `page {}`, `Sector: {}`,\
|
| 189 |
+
# `GHG: {}`, `Adapt-Mitig :{}`'\
|
| 190 |
+
# .format(i+1,hits.iloc[i]['Relevancy'],
|
| 191 |
+
# hits.iloc[i]['page'], hits.iloc[i]['Sector Label'],
|
| 192 |
+
# hits.iloc[i]['GHG Label'],hits.iloc[i]['Adapt-Mitig Label']))
|
| 193 |
+
# st.write("\t Text: \t{}".format(hits.iloc[i]['text'].replace("\n", " ")))
|
| 194 |
+
# hits = hits.reset_index(drop =True)
|
| 195 |
+
st.write('----------------')
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
st.caption("Filter table to select rows to keep for Target category")
|
| 199 |
+
hits = filter_for_tracs(hits)
|
| 200 |
+
convert_type = {'Netzero Label': 'category',
|
| 201 |
+
'Conditional Label':'category',
|
| 202 |
+
'GHG Label':'category',
|
| 203 |
+
}
|
| 204 |
+
hits = hits.astype(convert_type)
|
| 205 |
+
filter_dataframe(hits)
|
| 206 |
+
|
| 207 |
+
# filtered_df = filtered_df[filtered_df.keep == True]
|
| 208 |
+
# st.write('Explore the data')
|
| 209 |
+
# AgGrid(hits)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
with st.sidebar:
|
| 213 |
+
st.write('-------------')
|
| 214 |
+
df_xlsx = to_excel(df)
|
| 215 |
+
st.download_button(label='📥 Download Result',
|
| 216 |
+
data=df_xlsx ,
|
| 217 |
+
file_name= os.path.splitext(os.path.basename(st.session_state['filename']))[0]+'.xlsx')
|
| 218 |
+
|
| 219 |
+
# st.write(
|
| 220 |
+
# """This app accomodates the blog [here](https://blog.streamlit.io/auto-generate-a-dataframe-filtering-ui-in-streamlit-with-filter_dataframe/)
|
| 221 |
+
# and walks you through one example of how the Streamlit
|
| 222 |
+
# Data Science Team builds add-on functions to Streamlit.
|
| 223 |
+
# """
|
| 224 |
+
# )
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def filter_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
| 228 |
+
"""
|
| 229 |
+
Adds a UI on top of a dataframe to let viewers filter columns
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
df (pd.DataFrame): Original dataframe
|
| 233 |
+
|
| 234 |
+
Returns:
|
| 235 |
+
pd.DataFrame: Filtered dataframe
|
| 236 |
+
"""
|
| 237 |
+
modify = st.checkbox("Add filters")
|
| 238 |
+
|
| 239 |
+
if not modify:
|
| 240 |
+
st.session_state['target_hits'] = df
|
| 241 |
+
return
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
# df = df.copy()
|
| 245 |
+
# st.write(len(df))
|
| 246 |
+
|
| 247 |
+
# Try to convert datetimes into a standard format (datetime, no timezone)
|
| 248 |
+
# for col in df.columns:
|
| 249 |
+
# if is_object_dtype(df[col]):
|
| 250 |
+
# try:
|
| 251 |
+
# df[col] = pd.to_datetime(df[col])
|
| 252 |
+
# except Exception:
|
| 253 |
+
# pass
|
| 254 |
+
|
| 255 |
+
# if is_datetime64_any_dtype(df[col]):
|
| 256 |
+
# df[col] = df[col].dt.tz_localize(None)
|
| 257 |
+
|
| 258 |
+
modification_container = st.container()
|
| 259 |
+
|
| 260 |
+
with modification_container:
|
| 261 |
+
cols = list(set(df.columns) -{'page','Extracted Text'})
|
| 262 |
+
cols.sort()
|
| 263 |
+
to_filter_columns = st.multiselect("Filter dataframe on", cols
|
| 264 |
+
)
|
| 265 |
+
for column in to_filter_columns:
|
| 266 |
+
left, right = st.columns((1, 20))
|
| 267 |
+
left.write("↳")
|
| 268 |
+
# Treat columns with < 10 unique values as categorical
|
| 269 |
+
if is_categorical_dtype(df[column]):
|
| 270 |
+
# st.write(type(df[column][0]), column)
|
| 271 |
+
user_cat_input = right.multiselect(
|
| 272 |
+
f"Values for {column}",
|
| 273 |
+
df[column].unique(),
|
| 274 |
+
default=list(df[column].unique()),
|
| 275 |
+
)
|
| 276 |
+
df = df[df[column].isin(user_cat_input)]
|
| 277 |
+
elif is_numeric_dtype(df[column]):
|
| 278 |
+
_min = float(df[column].min())
|
| 279 |
+
_max = float(df[column].max())
|
| 280 |
+
step = (_max - _min) / 100
|
| 281 |
+
user_num_input = right.slider(
|
| 282 |
+
f"Values for {column}",
|
| 283 |
+
_min,
|
| 284 |
+
_max,
|
| 285 |
+
(_min, _max),
|
| 286 |
+
step=step,
|
| 287 |
+
)
|
| 288 |
+
df = df[df[column].between(*user_num_input)]
|
| 289 |
+
elif is_list_like(df[column]) & (type(df[column][0]) == list) :
|
| 290 |
+
list_vals = set(x for lst in df[column].tolist() for x in lst)
|
| 291 |
+
user_multi_input = right.multiselect(
|
| 292 |
+
f"Values for {column}",
|
| 293 |
+
list_vals,
|
| 294 |
+
default=list_vals,
|
| 295 |
+
)
|
| 296 |
+
df['check'] = df[column].apply(lambda x: any(i in x for i in user_multi_input))
|
| 297 |
+
df = df[df.check == True]
|
| 298 |
+
df.drop(columns = ['check'],inplace=True)
|
| 299 |
+
|
| 300 |
+
# df[df[column].between(*user_num_input)]
|
| 301 |
+
# elif is_datetime64_any_dtype(df[column]):
|
| 302 |
+
# user_date_input = right.date_input(
|
| 303 |
+
# f"Values for {column}",
|
| 304 |
+
# value=(
|
| 305 |
+
# df[column].min(),
|
| 306 |
+
# df[column].max(),
|
| 307 |
+
# ),
|
| 308 |
+
# )
|
| 309 |
+
# if len(user_date_input) == 2:
|
| 310 |
+
# user_date_input = tuple(map(pd.to_datetime, user_date_input))
|
| 311 |
+
# start_date, end_date = user_date_input
|
| 312 |
+
# df = df.loc[df[column].between(start_date, end_date)]
|
| 313 |
+
else:
|
| 314 |
+
user_text_input = right.text_input(
|
| 315 |
+
f"Substring or regex in {column}",
|
| 316 |
+
)
|
| 317 |
+
if user_text_input:
|
| 318 |
+
df = df[df[column].str.lower().str.contains(user_text_input)]
|
| 319 |
+
|
| 320 |
+
df = df.reset_index(drop=True)
|
| 321 |
+
|
| 322 |
+
st.session_state['target_hits'] = df
|
| 323 |
+
df['IKI_Netzero'] = df.apply(lambda x: 'T_NETZERO' if ((x['Netzero Label'] == 'NETZERO TARGET') &
|
| 324 |
+
(x['Conditional Label'] == 'UNCONDITIONAL'))
|
| 325 |
+
else 'T_NETZERO_C' if ((x['Netzero Label'] == 'NETZERO TARGET') &
|
| 326 |
+
(x['Conditional Label'] == 'CONDITIONAL')
|
| 327 |
+
)
|
| 328 |
+
else None, axis=1
|
| 329 |
+
)
|
| 330 |
+
def check_t(s,c):
|
| 331 |
+
temp = []
|
| 332 |
+
if (('Transport' in s) & (c== 'UNCONDITIONAL')):
|
| 333 |
+
temp.append('T_Transport_Unc')
|
| 334 |
+
if (('Transport' in s) & (c == 'CONDITIONAL')):
|
| 335 |
+
temp.append('T_Transport_C')
|
| 336 |
+
if (('Economy-wide' in s) & (c == 'CONDITIONAL')):
|
| 337 |
+
temp.append('T_Economy_C')
|
| 338 |
+
if (('Economy-wide' in s) & (c == 'UNCONDITIONAL')):
|
| 339 |
+
temp.append('T_Economy_Unc')
|
| 340 |
+
if (('Energy' in s) & (c == 'CONDITIONAL')):
|
| 341 |
+
temp.append('T_Energy_C')
|
| 342 |
+
if (('Energy' in s) & (c == 'UNCONDITIONAL')):
|
| 343 |
+
temp.append('T_Economy_Unc')
|
| 344 |
+
return temp
|
| 345 |
+
df['IKI_Target'] = df.apply(lambda x:check_t(x['Sector Label'], x['Conditional Label']),
|
| 346 |
+
axis=1 )
|
| 347 |
+
|
| 348 |
+
# target_hits = st.session_state['target_hits']
|
| 349 |
+
df['keep'] = True
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
df = df[['text','IKI_Netzero','IKI_Target','Target Score','Netzero Label','GHG Label',
|
| 353 |
+
'Conditional Label','Sector Label','Adapt-Mitig Label','page','keep']]
|
| 354 |
+
st.dataframe(df)
|
| 355 |
+
# df = st.data_editor(
|
| 356 |
+
# df,
|
| 357 |
+
# column_config={
|
| 358 |
+
# "keep": st.column_config.CheckboxColumn(
|
| 359 |
+
# help="Select which rows to keep",
|
| 360 |
+
# default=False,
|
| 361 |
+
# )
|
| 362 |
+
# },
|
| 363 |
+
# disabled=list(set(df.columns) - {'keep'}),
|
| 364 |
+
# hide_index=True,
|
| 365 |
+
# )
|
| 366 |
+
# st.write("updating target hits....")
|
| 367 |
+
# st.write(len(df[df.keep == True]))
|
| 368 |
+
st.session_state['target_hits'] = df
|
| 369 |
+
|
| 370 |
+
return
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
# df = pd.read_csv(
|
| 374 |
+
# "https://raw.githubusercontent.com/mcnakhaee/palmerpenguins/master/palmerpenguins/data/penguins.csv"
|
| 375 |
+
# )
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
# else:
|
| 379 |
+
# st.info("🤔 No Targets found")
|
| 380 |
+
# count_df = df['Target Label'].value_counts()
|
| 381 |
+
# count_df = count_df.rename('count')
|
| 382 |
+
# count_df = count_df.rename_axis('Target Label').reset_index()
|
| 383 |
+
# count_df['Label_def'] = count_df['Target Label'].apply(lambda x: _lab_dict[x])
|
| 384 |
+
# st.plotly_chart(fig,use_container_width= True)
|
| 385 |
+
|
| 386 |
+
# count_netzero = sum(hits['Netzero Label'] == 'NETZERO')
|
| 387 |
+
# count_ghg = sum(hits['GHG Label'] == 'LABEL_2')
|
| 388 |
+
# count_economy = sum([True if 'Economy-wide' in x else False
|
| 389 |
+
# for x in hits['Sector Label']])
|
| 390 |
+
# # excel part
|
| 391 |
+
# temp = df[df['Relevancy']>threshold]
|
| 392 |
+
|
| 393 |
+
# df['Validation'] = 'No'
|
| 394 |
+
# df_xlsx = to_excel(df)
|
| 395 |
+
# st.download_button(label='📥 Download Current Result',
|
| 396 |
+
# data=df_xlsx ,
|
| 397 |
+
# file_name= 'file_target.xlsx')
|