Spaces:
Sleeping
Sleeping
| # Copyright (c) 2024 Bytedance Ltd. and/or its affiliates | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import argparse | |
| from tqdm.auto import tqdm | |
| import torch | |
| import torch.nn as nn | |
| from einops import rearrange | |
| from latentsync.models.syncnet import SyncNet | |
| from latentsync.data.syncnet_dataset import SyncNetDataset | |
| from diffusers import AutoencoderKL | |
| from omegaconf import OmegaConf | |
| from accelerate.utils import set_seed | |
| def main(config): | |
| set_seed(config.run.seed) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| if config.data.latent_space: | |
| vae = AutoencoderKL.from_pretrained( | |
| "runwayml/stable-diffusion-inpainting", subfolder="vae", revision="fp16", torch_dtype=torch.float16 | |
| ) | |
| vae.requires_grad_(False) | |
| vae.to(device) | |
| # Dataset and Dataloader setup | |
| dataset = SyncNetDataset(config.data.val_data_dir, config.data.val_fileslist, config) | |
| test_dataloader = torch.utils.data.DataLoader( | |
| dataset, | |
| batch_size=config.data.batch_size, | |
| shuffle=False, | |
| num_workers=config.data.num_workers, | |
| drop_last=False, | |
| worker_init_fn=dataset.worker_init_fn, | |
| ) | |
| # Model | |
| syncnet = SyncNet(OmegaConf.to_container(config.model)).to(device) | |
| print(f"Load checkpoint from: {config.ckpt.inference_ckpt_path}") | |
| checkpoint = torch.load(config.ckpt.inference_ckpt_path, map_location=device) | |
| syncnet.load_state_dict(checkpoint["state_dict"]) | |
| syncnet.to(dtype=torch.float16) | |
| syncnet.requires_grad_(False) | |
| syncnet.eval() | |
| global_step = 0 | |
| num_val_batches = config.data.num_val_samples // config.data.batch_size | |
| progress_bar = tqdm(range(0, num_val_batches), initial=0, desc="Testing accuracy") | |
| num_correct_preds = 0 | |
| num_total_preds = 0 | |
| while True: | |
| for step, batch in enumerate(test_dataloader): | |
| ### >>>> Test >>>> ### | |
| frames = batch["frames"].to(device, dtype=torch.float16) | |
| audio_samples = batch["audio_samples"].to(device, dtype=torch.float16) | |
| y = batch["y"].to(device, dtype=torch.float16).squeeze(1) | |
| if config.data.latent_space: | |
| frames = rearrange(frames, "b f c h w -> (b f) c h w") | |
| with torch.no_grad(): | |
| frames = vae.encode(frames).latent_dist.sample() * 0.18215 | |
| frames = rearrange(frames, "(b f) c h w -> b (f c) h w", f=config.data.num_frames) | |
| else: | |
| frames = rearrange(frames, "b f c h w -> b (f c) h w") | |
| if config.data.lower_half: | |
| height = frames.shape[2] | |
| frames = frames[:, :, height // 2 :, :] | |
| with torch.no_grad(): | |
| vision_embeds, audio_embeds = syncnet(frames, audio_samples) | |
| sims = nn.functional.cosine_similarity(vision_embeds, audio_embeds) | |
| preds = (sims > 0.5).to(dtype=torch.float16) | |
| num_correct_preds += (preds == y).sum().item() | |
| num_total_preds += len(sims) | |
| progress_bar.update(1) | |
| global_step += 1 | |
| if global_step >= num_val_batches: | |
| progress_bar.close() | |
| print(f"Accuracy score: {num_correct_preds / num_total_preds*100:.2f}%") | |
| return | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="Code to test the accuracy of expert lip-sync discriminator") | |
| parser.add_argument("--config_path", type=str, default="configs/syncnet/syncnet_16_latent.yaml") | |
| args = parser.parse_args() | |
| # Load a configuration file | |
| config = OmegaConf.load(args.config_path) | |
| main(config) | |