Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,43 +1,28 @@
|
|
| 1 |
-
|
| 2 |
-
from langchain.chains import RetrievalQA
|
| 3 |
-
from langchain.document_loaders import TextLoader
|
| 4 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 5 |
from langchain.vectorstores import FAISS
|
| 6 |
from transformers import pipeline
|
| 7 |
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
# Paste your data here
|
| 11 |
-
data = """
|
| 12 |
-
Enter your text data here. For example:
|
| 13 |
-
"""
|
| 14 |
-
|
| 15 |
-
# Split data into chunks for embedding
|
| 16 |
def chunk_text(text, chunk_size=500):
|
| 17 |
words = text.split()
|
| 18 |
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
| 19 |
return chunks
|
| 20 |
|
| 21 |
-
#
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
vectorstore = FAISS.from_texts(text_chunks, embeddings)
|
| 27 |
-
|
| 28 |
-
# Load a simple LLM (Hugging Face model)
|
| 29 |
-
from transformers import pipeline
|
| 30 |
-
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
| 31 |
-
|
| 32 |
-
# Define a function to perform QA
|
| 33 |
-
def answer_question(question):
|
| 34 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
print("sentence-transformers is installed successfully!")
|
| 43 |
-
|
|
|
|
| 1 |
+
import streamlit as st
|
|
|
|
|
|
|
| 2 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
| 3 |
from langchain.vectorstores import FAISS
|
| 4 |
from transformers import pipeline
|
| 5 |
|
| 6 |
+
# Initialize embedding model
|
| 7 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
| 8 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def chunk_text(text, chunk_size=500):
|
| 11 |
words = text.split()
|
| 12 |
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
| 13 |
return chunks
|
| 14 |
|
| 15 |
+
# Streamlit app
|
| 16 |
+
st.title("Simple RAG Application")
|
| 17 |
+
data = st.text_area("Paste your text here:")
|
| 18 |
+
if data:
|
| 19 |
+
text_chunks = chunk_text(data)
|
| 20 |
+
vectorstore = FAISS.from_texts(text_chunks, embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
| 22 |
+
|
| 23 |
+
question = st.text_input("Ask a question:")
|
| 24 |
+
if question:
|
| 25 |
+
relevant_docs = retriever.get_relevant_documents(question)
|
| 26 |
+
context = " ".join([doc.page_content for doc in relevant_docs])
|
| 27 |
+
answer = qa_pipeline(question=question, context=context)
|
| 28 |
+
st.write("Answer:", answer["answer"])
|
|
|
|
|
|