Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,43 +1,28 @@
|
|
1 |
-
|
2 |
-
from langchain.chains import RetrievalQA
|
3 |
-
from langchain.document_loaders import TextLoader
|
4 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from transformers import pipeline
|
7 |
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
# Paste your data here
|
11 |
-
data = """
|
12 |
-
Enter your text data here. For example:
|
13 |
-
"""
|
14 |
-
|
15 |
-
# Split data into chunks for embedding
|
16 |
def chunk_text(text, chunk_size=500):
|
17 |
words = text.split()
|
18 |
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
19 |
return chunks
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
vectorstore = FAISS.from_texts(text_chunks, embeddings)
|
27 |
-
|
28 |
-
# Load a simple LLM (Hugging Face model)
|
29 |
-
from transformers import pipeline
|
30 |
-
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
31 |
-
|
32 |
-
# Define a function to perform QA
|
33 |
-
def answer_question(question):
|
34 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
print("sentence-transformers is installed successfully!")
|
43 |
-
|
|
|
1 |
+
import streamlit as st
|
|
|
|
|
2 |
from langchain.embeddings import SentenceTransformerEmbeddings
|
3 |
from langchain.vectorstores import FAISS
|
4 |
from transformers import pipeline
|
5 |
|
6 |
+
# Initialize embedding model
|
7 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
|
8 |
+
qa_pipeline = pipeline("question-answering", model="distilbert-base-uncased-distilled-squad")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def chunk_text(text, chunk_size=500):
|
11 |
words = text.split()
|
12 |
chunks = [" ".join(words[i:i + chunk_size]) for i in range(0, len(words), chunk_size)]
|
13 |
return chunks
|
14 |
|
15 |
+
# Streamlit app
|
16 |
+
st.title("Simple RAG Application")
|
17 |
+
data = st.text_area("Paste your text here:")
|
18 |
+
if data:
|
19 |
+
text_chunks = chunk_text(data)
|
20 |
+
vectorstore = FAISS.from_texts(text_chunks, embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
22 |
+
|
23 |
+
question = st.text_input("Ask a question:")
|
24 |
+
if question:
|
25 |
+
relevant_docs = retriever.get_relevant_documents(question)
|
26 |
+
context = " ".join([doc.page_content for doc in relevant_docs])
|
27 |
+
answer = qa_pipeline(question=question, context=context)
|
28 |
+
st.write("Answer:", answer["answer"])
|
|
|
|