Spaces:
Paused
Paused
WIP
Browse files
app.py
CHANGED
@@ -1,14 +1,10 @@
|
|
1 |
-
import spaces
|
2 |
-
import torch
|
3 |
import gradio as gr
|
4 |
-
|
5 |
-
from transformers.pipelines.audio_utils import ffmpeg_read
|
6 |
import subprocess
|
7 |
from loguru import logger
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
FILE_LIMIT_MB = 1000
|
12 |
|
13 |
# Check if ffmpeg is installed
|
14 |
def check_ffmpeg():
|
@@ -21,33 +17,33 @@ def check_ffmpeg():
|
|
21 |
# Initialize ffmpeg check
|
22 |
check_ffmpeg()
|
23 |
|
24 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
25 |
-
|
26 |
-
pipe = pipeline(
|
27 |
-
task="automatic-speech-recognition",
|
28 |
-
model=MODEL_NAME,
|
29 |
-
chunk_length_s=30,
|
30 |
-
device=device,
|
31 |
-
)
|
32 |
-
|
33 |
-
print(pipe)
|
34 |
-
|
35 |
-
@spaces.GPU
|
36 |
def transcribe(inputs):
|
37 |
if inputs is None:
|
38 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
53 |
|
@@ -62,9 +58,7 @@ mf_transcribe = gr.Interface(
|
|
62 |
],
|
63 |
title="Whisper Large V3 Turbo: Transcribe Audio",
|
64 |
description=(
|
65 |
-
"Transcribe long-form microphone or audio inputs with the click of a button!
|
66 |
-
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
67 |
-
" of arbitrary length."
|
68 |
),
|
69 |
allow_flagging="never",
|
70 |
)
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
|
|
3 |
import subprocess
|
4 |
from loguru import logger
|
5 |
|
6 |
+
API_URL = "https://skdpcqcdd929o4k3.us-east-1.aws.endpoints.huggingface.cloud"
|
7 |
+
|
|
|
8 |
|
9 |
# Check if ffmpeg is installed
|
10 |
def check_ffmpeg():
|
|
|
17 |
# Initialize ffmpeg check
|
18 |
check_ffmpeg()
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def transcribe(inputs):
|
21 |
if inputs is None:
|
22 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
23 |
|
24 |
+
headers = {
|
25 |
+
"Accept": "application/json",
|
26 |
+
"Content-Type": "audio/flac"
|
27 |
+
}
|
28 |
+
|
29 |
+
try:
|
30 |
+
with open(inputs, "rb") as f:
|
31 |
+
data = f.read()
|
32 |
+
response = requests.post(API_URL, headers=headers, data=data)
|
33 |
+
result = response.json()
|
34 |
+
|
35 |
+
# Format timestamps with text
|
36 |
+
timestamps = []
|
37 |
+
for chunk in result["chunks"]:
|
38 |
+
start_time = chunk["timestamp"][0]
|
39 |
+
end_time = chunk["timestamp"][1]
|
40 |
+
text = chunk["text"].strip()
|
41 |
+
timestamps.append(f"[{start_time:.2f}s - {end_time:.2f}s] {text} \n \n")
|
42 |
+
|
43 |
+
return result["text"], "\n".join(timestamps)
|
44 |
+
except Exception as e:
|
45 |
+
logger.error(f"Error during transcription: {str(e)}")
|
46 |
+
raise gr.Error(f"Failed to transcribe audio: {str(e)}")
|
47 |
|
48 |
demo = gr.Blocks(theme=gr.themes.Ocean())
|
49 |
|
|
|
58 |
],
|
59 |
title="Whisper Large V3 Turbo: Transcribe Audio",
|
60 |
description=(
|
61 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! "
|
|
|
|
|
62 |
),
|
63 |
allow_flagging="never",
|
64 |
)
|