Spaces:
Paused
Paused
WIP
Browse files
app.py
CHANGED
@@ -2,12 +2,32 @@ import gradio as gr
|
|
2 |
import requests
|
3 |
import subprocess
|
4 |
from loguru import logger
|
|
|
5 |
|
6 |
# Configure loguru
|
7 |
logger.add("app.log", rotation="500 MB", level="DEBUG")
|
8 |
|
9 |
API_URL = "https://skdpcqcdd929o4k3.us-east-1.aws.endpoints.huggingface.cloud"
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Check if ffmpeg is installed
|
12 |
def check_ffmpeg():
|
13 |
try:
|
@@ -20,7 +40,7 @@ def check_ffmpeg():
|
|
20 |
# Initialize ffmpeg check
|
21 |
check_ffmpeg()
|
22 |
|
23 |
-
def transcribe(inputs, return_timestamps):
|
24 |
if inputs is None:
|
25 |
logger.warning("No audio file submitted")
|
26 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
@@ -63,9 +83,9 @@ def transcribe(inputs, return_timestamps):
|
|
63 |
"text": result["text"]
|
64 |
}
|
65 |
|
|
|
66 |
if return_timestamps and "chunks" in result:
|
67 |
logger.info(f"Processing {len(result['chunks'])} chunks")
|
68 |
-
formatted_result["chunks"] = []
|
69 |
for i, chunk in enumerate(result["chunks"]):
|
70 |
logger.debug(f"Processing chunk {i}: {chunk}")
|
71 |
try:
|
@@ -74,18 +94,27 @@ def transcribe(inputs, return_timestamps):
|
|
74 |
text = chunk.get("text", "").strip()
|
75 |
|
76 |
if start_time is not None and end_time is not None:
|
77 |
-
|
78 |
"text": text,
|
79 |
"timestamp": [start_time, end_time]
|
80 |
-
}
|
|
|
|
|
81 |
else:
|
82 |
logger.warning(f"Invalid timestamp in chunk {i}: {chunk}")
|
83 |
except Exception as chunk_error:
|
84 |
logger.error(f"Error processing chunk {i}: {str(chunk_error)}")
|
85 |
continue
|
86 |
-
logger.info(f"Successfully processed transcription with {len(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
return formatted_result
|
89 |
except Exception as e:
|
90 |
logger.exception(f"Error during transcription: {str(e)}")
|
91 |
raise gr.Error(f"Failed to transcribe audio: {str(e)}")
|
@@ -97,13 +126,16 @@ mf_transcribe = gr.Interface(
|
|
97 |
inputs=[
|
98 |
gr.Audio(sources="microphone", type="filepath"),
|
99 |
gr.Checkbox(label="Include timestamps", value=True),
|
|
|
100 |
],
|
101 |
outputs=[
|
102 |
gr.JSON(label="Transcription", open=True),
|
|
|
103 |
],
|
104 |
title="Whisper Large V3 Turbo: Transcribe Audio",
|
105 |
description=(
|
106 |
"Transcribe long-form microphone or audio inputs with the click of a button! "
|
|
|
107 |
),
|
108 |
flagging_mode="manual",
|
109 |
flagging_options=[
|
@@ -119,13 +151,16 @@ file_transcribe = gr.Interface(
|
|
119 |
inputs=[
|
120 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
121 |
gr.Checkbox(label="Include timestamps", value=True),
|
|
|
122 |
],
|
123 |
outputs=[
|
124 |
gr.JSON(label="Transcription", open=True),
|
|
|
125 |
],
|
126 |
title="Whisper Large V3: Transcribe Audio",
|
127 |
description=(
|
128 |
"Transcribe long-form microphone or audio inputs with the click of a button! "
|
|
|
129 |
),
|
130 |
flagging_mode="manual",
|
131 |
flagging_options=[
|
|
|
2 |
import requests
|
3 |
import subprocess
|
4 |
from loguru import logger
|
5 |
+
import datetime
|
6 |
|
7 |
# Configure loguru
|
8 |
logger.add("app.log", rotation="500 MB", level="DEBUG")
|
9 |
|
10 |
API_URL = "https://skdpcqcdd929o4k3.us-east-1.aws.endpoints.huggingface.cloud"
|
11 |
|
12 |
+
def format_time(seconds):
|
13 |
+
"""Convert seconds to SRT time format (HH:MM:SS,mmm)"""
|
14 |
+
td = datetime.timedelta(seconds=float(seconds))
|
15 |
+
hours = td.seconds // 3600
|
16 |
+
minutes = (td.seconds % 3600) // 60
|
17 |
+
seconds = td.seconds % 60
|
18 |
+
milliseconds = td.microseconds // 1000
|
19 |
+
return f"{hours:02d}:{minutes:02d}:{seconds:02d},{milliseconds:03d}"
|
20 |
+
|
21 |
+
def generate_srt(chunks):
|
22 |
+
"""Generate SRT format subtitles from chunks"""
|
23 |
+
srt_content = []
|
24 |
+
for i, chunk in enumerate(chunks, 1):
|
25 |
+
start_time = format_time(chunk["timestamp"][0])
|
26 |
+
end_time = format_time(chunk["timestamp"][1])
|
27 |
+
text = chunk["text"].strip()
|
28 |
+
srt_content.append(f"{i}\n{start_time} --> {end_time}\n{text}\n\n")
|
29 |
+
return "".join(srt_content)
|
30 |
+
|
31 |
# Check if ffmpeg is installed
|
32 |
def check_ffmpeg():
|
33 |
try:
|
|
|
40 |
# Initialize ffmpeg check
|
41 |
check_ffmpeg()
|
42 |
|
43 |
+
def transcribe(inputs, return_timestamps, generate_subs):
|
44 |
if inputs is None:
|
45 |
logger.warning("No audio file submitted")
|
46 |
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
|
|
83 |
"text": result["text"]
|
84 |
}
|
85 |
|
86 |
+
chunks = []
|
87 |
if return_timestamps and "chunks" in result:
|
88 |
logger.info(f"Processing {len(result['chunks'])} chunks")
|
|
|
89 |
for i, chunk in enumerate(result["chunks"]):
|
90 |
logger.debug(f"Processing chunk {i}: {chunk}")
|
91 |
try:
|
|
|
94 |
text = chunk.get("text", "").strip()
|
95 |
|
96 |
if start_time is not None and end_time is not None:
|
97 |
+
chunk_data = {
|
98 |
"text": text,
|
99 |
"timestamp": [start_time, end_time]
|
100 |
+
}
|
101 |
+
formatted_result["chunks"] = chunks
|
102 |
+
chunks.append(chunk_data)
|
103 |
else:
|
104 |
logger.warning(f"Invalid timestamp in chunk {i}: {chunk}")
|
105 |
except Exception as chunk_error:
|
106 |
logger.error(f"Error processing chunk {i}: {str(chunk_error)}")
|
107 |
continue
|
108 |
+
logger.info(f"Successfully processed transcription with {len(chunks)} chunks")
|
109 |
+
|
110 |
+
# Generate subtitles if requested
|
111 |
+
srt_content = None
|
112 |
+
if generate_subs and chunks:
|
113 |
+
logger.info("Generating SRT subtitles")
|
114 |
+
srt_content = generate_srt(chunks)
|
115 |
+
logger.info("SRT subtitles generated successfully")
|
116 |
|
117 |
+
return formatted_result, srt_content
|
118 |
except Exception as e:
|
119 |
logger.exception(f"Error during transcription: {str(e)}")
|
120 |
raise gr.Error(f"Failed to transcribe audio: {str(e)}")
|
|
|
126 |
inputs=[
|
127 |
gr.Audio(sources="microphone", type="filepath"),
|
128 |
gr.Checkbox(label="Include timestamps", value=True),
|
129 |
+
gr.Checkbox(label="Generate subtitles", value=True),
|
130 |
],
|
131 |
outputs=[
|
132 |
gr.JSON(label="Transcription", open=True),
|
133 |
+
gr.File(label="Subtitles (SRT)", visible=True),
|
134 |
],
|
135 |
title="Whisper Large V3 Turbo: Transcribe Audio",
|
136 |
description=(
|
137 |
"Transcribe long-form microphone or audio inputs with the click of a button! "
|
138 |
+
"Generate subtitles for your videos in SRT format."
|
139 |
),
|
140 |
flagging_mode="manual",
|
141 |
flagging_options=[
|
|
|
151 |
inputs=[
|
152 |
gr.Audio(sources="upload", type="filepath", label="Audio file"),
|
153 |
gr.Checkbox(label="Include timestamps", value=True),
|
154 |
+
gr.Checkbox(label="Generate subtitles", value=True),
|
155 |
],
|
156 |
outputs=[
|
157 |
gr.JSON(label="Transcription", open=True),
|
158 |
+
gr.File(label="Subtitles (SRT)", visible=True),
|
159 |
],
|
160 |
title="Whisper Large V3: Transcribe Audio",
|
161 |
description=(
|
162 |
"Transcribe long-form microphone or audio inputs with the click of a button! "
|
163 |
+
"Generate subtitles for your videos in SRT format."
|
164 |
),
|
165 |
flagging_mode="manual",
|
166 |
flagging_options=[
|