Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextConfig, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| LlamaConfig, | |
| LlamaTokenizerFast, | |
| LlavaConfig, | |
| LlavaForConditionalGeneration, | |
| ) | |
| from transformers.models.clip import CLIPVisionConfig | |
| from diffusers import ( | |
| AutoencoderKLHunyuanVideo, | |
| FlowMatchEulerDiscreteScheduler, | |
| HunyuanVideoImageToVideoPipeline, | |
| HunyuanVideoTransformer3DModel, | |
| ) | |
| from diffusers.utils.testing_utils import enable_full_determinism, torch_device | |
| from ..test_pipelines_common import PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, to_np | |
| enable_full_determinism() | |
| class HunyuanVideoImageToVideoPipelineFastTests( | |
| PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, unittest.TestCase | |
| ): | |
| pipeline_class = HunyuanVideoImageToVideoPipeline | |
| params = frozenset( | |
| ["image", "prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"] | |
| ) | |
| batch_params = frozenset(["prompt", "image"]) | |
| required_optional_params = frozenset( | |
| [ | |
| "num_inference_steps", | |
| "generator", | |
| "latents", | |
| "return_dict", | |
| "callback_on_step_end", | |
| "callback_on_step_end_tensor_inputs", | |
| ] | |
| ) | |
| supports_dduf = False | |
| # there is no xformers processor for Flux | |
| test_xformers_attention = False | |
| test_layerwise_casting = True | |
| test_group_offloading = True | |
| def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1): | |
| torch.manual_seed(0) | |
| transformer = HunyuanVideoTransformer3DModel( | |
| in_channels=2 * 4 + 1, | |
| out_channels=4, | |
| num_attention_heads=2, | |
| attention_head_dim=10, | |
| num_layers=num_layers, | |
| num_single_layers=num_single_layers, | |
| num_refiner_layers=1, | |
| patch_size=1, | |
| patch_size_t=1, | |
| guidance_embeds=False, | |
| text_embed_dim=16, | |
| pooled_projection_dim=8, | |
| rope_axes_dim=(2, 4, 4), | |
| image_condition_type="latent_concat", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKLHunyuanVideo( | |
| in_channels=3, | |
| out_channels=3, | |
| latent_channels=4, | |
| down_block_types=( | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| "HunyuanVideoDownBlock3D", | |
| ), | |
| up_block_types=( | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| "HunyuanVideoUpBlock3D", | |
| ), | |
| block_out_channels=(8, 8, 8, 8), | |
| layers_per_block=1, | |
| act_fn="silu", | |
| norm_num_groups=4, | |
| scaling_factor=0.476986, | |
| spatial_compression_ratio=8, | |
| temporal_compression_ratio=4, | |
| mid_block_add_attention=True, | |
| ) | |
| torch.manual_seed(0) | |
| scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0) | |
| text_config = LlamaConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=16, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=2, | |
| pad_token_id=100, | |
| vocab_size=1000, | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| vision_config = CLIPVisionConfig( | |
| hidden_size=8, | |
| intermediate_size=37, | |
| projection_dim=32, | |
| num_attention_heads=4, | |
| num_hidden_layers=2, | |
| image_size=224, | |
| ) | |
| llava_text_encoder_config = LlavaConfig(vision_config, text_config, pad_token_id=100, image_token_index=101) | |
| clip_text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=8, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=2, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder = LlavaForConditionalGeneration(llava_text_encoder_config) | |
| tokenizer = LlamaTokenizerFast.from_pretrained("finetrainers/dummy-hunyaunvideo", subfolder="tokenizer") | |
| torch.manual_seed(0) | |
| text_encoder_2 = CLIPTextModel(clip_text_encoder_config) | |
| tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| torch.manual_seed(0) | |
| image_processor = CLIPImageProcessor( | |
| crop_size=224, | |
| do_center_crop=True, | |
| do_normalize=True, | |
| do_resize=True, | |
| image_mean=[0.48145466, 0.4578275, 0.40821073], | |
| image_std=[0.26862954, 0.26130258, 0.27577711], | |
| resample=3, | |
| size=224, | |
| ) | |
| components = { | |
| "transformer": transformer, | |
| "vae": vae, | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "image_processor": image_processor, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| image_height = 16 | |
| image_width = 16 | |
| image = Image.new("RGB", (image_width, image_height)) | |
| inputs = { | |
| "image": image, | |
| "prompt": "dance monkey", | |
| "prompt_template": { | |
| "template": "{}", | |
| "crop_start": 0, | |
| "image_emb_len": 49, | |
| "image_emb_start": 5, | |
| "image_emb_end": 54, | |
| "double_return_token_id": 0, | |
| }, | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 4.5, | |
| "height": image_height, | |
| "width": image_width, | |
| "num_frames": 9, | |
| "max_sequence_length": 64, | |
| "output_type": "pt", | |
| } | |
| return inputs | |
| def test_inference(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| video = pipe(**inputs).frames | |
| generated_video = video[0] | |
| # NOTE: The expected video has 4 lesser frames because they are dropped in the pipeline | |
| self.assertEqual(generated_video.shape, (5, 3, 16, 16)) | |
| expected_video = torch.randn(5, 3, 16, 16) | |
| max_diff = np.abs(generated_video - expected_video).max() | |
| self.assertLessEqual(max_diff, 1e10) | |
| def test_callback_inputs(self): | |
| sig = inspect.signature(self.pipeline_class.__call__) | |
| has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters | |
| has_callback_step_end = "callback_on_step_end" in sig.parameters | |
| if not (has_callback_tensor_inputs and has_callback_step_end): | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| self.assertTrue( | |
| hasattr(pipe, "_callback_tensor_inputs"), | |
| f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
| ) | |
| def callback_inputs_subset(pipe, i, t, callback_kwargs): | |
| # iterate over callback args | |
| for tensor_name, tensor_value in callback_kwargs.items(): | |
| # check that we're only passing in allowed tensor inputs | |
| assert tensor_name in pipe._callback_tensor_inputs | |
| return callback_kwargs | |
| def callback_inputs_all(pipe, i, t, callback_kwargs): | |
| for tensor_name in pipe._callback_tensor_inputs: | |
| assert tensor_name in callback_kwargs | |
| # iterate over callback args | |
| for tensor_name, tensor_value in callback_kwargs.items(): | |
| # check that we're only passing in allowed tensor inputs | |
| assert tensor_name in pipe._callback_tensor_inputs | |
| return callback_kwargs | |
| inputs = self.get_dummy_inputs(torch_device) | |
| # Test passing in a subset | |
| inputs["callback_on_step_end"] = callback_inputs_subset | |
| inputs["callback_on_step_end_tensor_inputs"] = ["latents"] | |
| output = pipe(**inputs)[0] | |
| # Test passing in a everything | |
| inputs["callback_on_step_end"] = callback_inputs_all | |
| inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
| output = pipe(**inputs)[0] | |
| def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): | |
| is_last = i == (pipe.num_timesteps - 1) | |
| if is_last: | |
| callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) | |
| return callback_kwargs | |
| inputs["callback_on_step_end"] = callback_inputs_change_tensor | |
| inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
| output = pipe(**inputs)[0] | |
| assert output.abs().sum() < 1e10 | |
| def test_attention_slicing_forward_pass( | |
| self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
| ): | |
| if not self.test_attention_slicing: | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator_device = "cpu" | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_without_slicing = pipe(**inputs)[0] | |
| pipe.enable_attention_slicing(slice_size=1) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_slicing1 = pipe(**inputs)[0] | |
| pipe.enable_attention_slicing(slice_size=2) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_slicing2 = pipe(**inputs)[0] | |
| if test_max_difference: | |
| max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
| max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
| self.assertLess( | |
| max(max_diff1, max_diff2), | |
| expected_max_diff, | |
| "Attention slicing should not affect the inference results", | |
| ) | |
| def test_vae_tiling(self, expected_diff_max: float = 0.2): | |
| # Seems to require higher tolerance than the other tests | |
| expected_diff_max = 0.6 | |
| generator_device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to("cpu") | |
| pipe.set_progress_bar_config(disable=None) | |
| # Without tiling | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["height"] = inputs["width"] = 128 | |
| output_without_tiling = pipe(**inputs)[0] | |
| # With tiling | |
| pipe.vae.enable_tiling( | |
| tile_sample_min_height=96, | |
| tile_sample_min_width=96, | |
| tile_sample_stride_height=64, | |
| tile_sample_stride_width=64, | |
| ) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["height"] = inputs["width"] = 128 | |
| output_with_tiling = pipe(**inputs)[0] | |
| self.assertLess( | |
| (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | |
| expected_diff_max, | |
| "VAE tiling should not affect the inference results", | |
| ) | |
| # TODO(aryan): Create a dummy gemma model with smol vocab size | |
| def test_inference_batch_consistent(self): | |
| pass | |
| def test_inference_batch_single_identical(self): | |
| pass | |
| def test_encode_prompt_works_in_isolation(self): | |
| pass | |