Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The HuggingFace Team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| import json | |
| import os | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer, T5EncoderModel | |
| from diffusers import AutoencoderKLCosmos, CosmosTextToWorldPipeline, CosmosTransformer3DModel, EDMEulerScheduler | |
| from diffusers.utils.testing_utils import enable_full_determinism, torch_device | |
| from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
| from ..test_pipelines_common import PipelineTesterMixin, to_np | |
| from .cosmos_guardrail import DummyCosmosSafetyChecker | |
| enable_full_determinism() | |
| class CosmosTextToWorldPipelineWrapper(CosmosTextToWorldPipeline): | |
| def from_pretrained(*args, **kwargs): | |
| kwargs["safety_checker"] = DummyCosmosSafetyChecker() | |
| return CosmosTextToWorldPipeline.from_pretrained(*args, **kwargs) | |
| class CosmosTextToWorldPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = CosmosTextToWorldPipelineWrapper | |
| params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| required_optional_params = frozenset( | |
| [ | |
| "num_inference_steps", | |
| "generator", | |
| "latents", | |
| "return_dict", | |
| "callback_on_step_end", | |
| "callback_on_step_end_tensor_inputs", | |
| ] | |
| ) | |
| supports_dduf = False | |
| test_xformers_attention = False | |
| test_layerwise_casting = True | |
| test_group_offloading = True | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| transformer = CosmosTransformer3DModel( | |
| in_channels=4, | |
| out_channels=4, | |
| num_attention_heads=2, | |
| attention_head_dim=16, | |
| num_layers=2, | |
| mlp_ratio=2, | |
| text_embed_dim=32, | |
| adaln_lora_dim=4, | |
| max_size=(4, 32, 32), | |
| patch_size=(1, 2, 2), | |
| rope_scale=(2.0, 1.0, 1.0), | |
| concat_padding_mask=True, | |
| extra_pos_embed_type="learnable", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKLCosmos( | |
| in_channels=3, | |
| out_channels=3, | |
| latent_channels=4, | |
| encoder_block_out_channels=(8, 8, 8, 8), | |
| decode_block_out_channels=(8, 8, 8, 8), | |
| attention_resolutions=(8,), | |
| resolution=64, | |
| num_layers=2, | |
| patch_size=4, | |
| patch_type="haar", | |
| scaling_factor=1.0, | |
| spatial_compression_ratio=4, | |
| temporal_compression_ratio=4, | |
| ) | |
| torch.manual_seed(0) | |
| scheduler = EDMEulerScheduler( | |
| sigma_min=0.002, | |
| sigma_max=80, | |
| sigma_data=0.5, | |
| sigma_schedule="karras", | |
| num_train_timesteps=1000, | |
| prediction_type="epsilon", | |
| rho=7.0, | |
| final_sigmas_type="sigma_min", | |
| ) | |
| text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| components = { | |
| "transformer": transformer, | |
| "vae": vae, | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| # We cannot run the Cosmos Guardrail for fast tests due to the large model size | |
| "safety_checker": DummyCosmosSafetyChecker(), | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "dance monkey", | |
| "negative_prompt": "bad quality", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 3.0, | |
| "height": 32, | |
| "width": 32, | |
| "num_frames": 9, | |
| "max_sequence_length": 16, | |
| "output_type": "pt", | |
| } | |
| return inputs | |
| def test_inference(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| video = pipe(**inputs).frames | |
| generated_video = video[0] | |
| self.assertEqual(generated_video.shape, (9, 3, 32, 32)) | |
| expected_video = torch.randn(9, 3, 32, 32) | |
| max_diff = np.abs(generated_video - expected_video).max() | |
| self.assertLessEqual(max_diff, 1e10) | |
| def test_callback_inputs(self): | |
| sig = inspect.signature(self.pipeline_class.__call__) | |
| has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters | |
| has_callback_step_end = "callback_on_step_end" in sig.parameters | |
| if not (has_callback_tensor_inputs and has_callback_step_end): | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| self.assertTrue( | |
| hasattr(pipe, "_callback_tensor_inputs"), | |
| f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
| ) | |
| def callback_inputs_subset(pipe, i, t, callback_kwargs): | |
| # iterate over callback args | |
| for tensor_name, tensor_value in callback_kwargs.items(): | |
| # check that we're only passing in allowed tensor inputs | |
| assert tensor_name in pipe._callback_tensor_inputs | |
| return callback_kwargs | |
| def callback_inputs_all(pipe, i, t, callback_kwargs): | |
| for tensor_name in pipe._callback_tensor_inputs: | |
| assert tensor_name in callback_kwargs | |
| # iterate over callback args | |
| for tensor_name, tensor_value in callback_kwargs.items(): | |
| # check that we're only passing in allowed tensor inputs | |
| assert tensor_name in pipe._callback_tensor_inputs | |
| return callback_kwargs | |
| inputs = self.get_dummy_inputs(torch_device) | |
| # Test passing in a subset | |
| inputs["callback_on_step_end"] = callback_inputs_subset | |
| inputs["callback_on_step_end_tensor_inputs"] = ["latents"] | |
| output = pipe(**inputs)[0] | |
| # Test passing in a everything | |
| inputs["callback_on_step_end"] = callback_inputs_all | |
| inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
| output = pipe(**inputs)[0] | |
| def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): | |
| is_last = i == (pipe.num_timesteps - 1) | |
| if is_last: | |
| callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) | |
| return callback_kwargs | |
| inputs["callback_on_step_end"] = callback_inputs_change_tensor | |
| inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
| output = pipe(**inputs)[0] | |
| assert output.abs().sum() < 1e10 | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-2) | |
| def test_attention_slicing_forward_pass( | |
| self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3 | |
| ): | |
| if not self.test_attention_slicing: | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator_device = "cpu" | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_without_slicing = pipe(**inputs)[0] | |
| pipe.enable_attention_slicing(slice_size=1) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_slicing1 = pipe(**inputs)[0] | |
| pipe.enable_attention_slicing(slice_size=2) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_slicing2 = pipe(**inputs)[0] | |
| if test_max_difference: | |
| max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max() | |
| max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max() | |
| self.assertLess( | |
| max(max_diff1, max_diff2), | |
| expected_max_diff, | |
| "Attention slicing should not affect the inference results", | |
| ) | |
| def test_vae_tiling(self, expected_diff_max: float = 0.2): | |
| generator_device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to("cpu") | |
| pipe.set_progress_bar_config(disable=None) | |
| # Without tiling | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["height"] = inputs["width"] = 128 | |
| output_without_tiling = pipe(**inputs)[0] | |
| # With tiling | |
| pipe.vae.enable_tiling( | |
| tile_sample_min_height=96, | |
| tile_sample_min_width=96, | |
| tile_sample_stride_height=64, | |
| tile_sample_stride_width=64, | |
| ) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["height"] = inputs["width"] = 128 | |
| output_with_tiling = pipe(**inputs)[0] | |
| self.assertLess( | |
| (to_np(output_without_tiling) - to_np(output_with_tiling)).max(), | |
| expected_diff_max, | |
| "VAE tiling should not affect the inference results", | |
| ) | |
| def test_save_load_optional_components(self, expected_max_difference=1e-4): | |
| self.pipeline_class._optional_components.remove("safety_checker") | |
| super().test_save_load_optional_components(expected_max_difference=expected_max_difference) | |
| self.pipeline_class._optional_components.append("safety_checker") | |
| def test_serialization_with_variants(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| model_components = [ | |
| component_name | |
| for component_name, component in pipe.components.items() | |
| if isinstance(component, torch.nn.Module) | |
| ] | |
| model_components.remove("safety_checker") | |
| variant = "fp16" | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| pipe.save_pretrained(tmpdir, variant=variant, safe_serialization=False) | |
| with open(f"{tmpdir}/model_index.json", "r") as f: | |
| config = json.load(f) | |
| for subfolder in os.listdir(tmpdir): | |
| if not os.path.isfile(subfolder) and subfolder in model_components: | |
| folder_path = os.path.join(tmpdir, subfolder) | |
| is_folder = os.path.isdir(folder_path) and subfolder in config | |
| assert is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)) | |
| def test_torch_dtype_dict(self): | |
| components = self.get_dummy_components() | |
| if not components: | |
| self.skipTest("No dummy components defined.") | |
| pipe = self.pipeline_class(**components) | |
| specified_key = next(iter(components.keys())) | |
| with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname: | |
| pipe.save_pretrained(tmpdirname, safe_serialization=False) | |
| torch_dtype_dict = {specified_key: torch.bfloat16, "default": torch.float16} | |
| loaded_pipe = self.pipeline_class.from_pretrained( | |
| tmpdirname, safety_checker=DummyCosmosSafetyChecker(), torch_dtype=torch_dtype_dict | |
| ) | |
| for name, component in loaded_pipe.components.items(): | |
| if name == "safety_checker": | |
| continue | |
| if isinstance(component, torch.nn.Module) and hasattr(component, "dtype"): | |
| expected_dtype = torch_dtype_dict.get(name, torch_dtype_dict.get("default", torch.float32)) | |
| self.assertEqual( | |
| component.dtype, | |
| expected_dtype, | |
| f"Component '{name}' has dtype {component.dtype} but expected {expected_dtype}", | |
| ) | |
| def test_encode_prompt_works_in_isolation(self): | |
| pass | |