|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
|
from typing import Dict, List, Optional, Union |
|
|
|
|
|
from ..utils import is_transformers_available, logging |
|
|
from .auto import DiffusersAutoQuantizer |
|
|
from .base import DiffusersQuantizer |
|
|
from .quantization_config import QuantizationConfigMixin as DiffQuantConfigMixin |
|
|
|
|
|
|
|
|
try: |
|
|
from transformers.utils.quantization_config import QuantizationConfigMixin as TransformersQuantConfigMixin |
|
|
except ImportError: |
|
|
|
|
|
class TransformersQuantConfigMixin: |
|
|
pass |
|
|
|
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class PipelineQuantizationConfig: |
|
|
""" |
|
|
Configuration class to be used when applying quantization on-the-fly to [`~DiffusionPipeline.from_pretrained`]. |
|
|
|
|
|
Args: |
|
|
quant_backend (`str`): Quantization backend to be used. When using this option, we assume that the backend |
|
|
is available to both `diffusers` and `transformers`. |
|
|
quant_kwargs (`dict`): Params to initialize the quantization backend class. |
|
|
components_to_quantize (`list`): Components of a pipeline to be quantized. |
|
|
quant_mapping (`dict`): Mapping defining the quantization specs to be used for the pipeline |
|
|
components. When using this argument, users are not expected to provide `quant_backend`, `quant_kawargs`, |
|
|
and `components_to_quantize`. |
|
|
""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
quant_backend: str = None, |
|
|
quant_kwargs: Dict[str, Union[str, float, int, dict]] = None, |
|
|
components_to_quantize: Optional[List[str]] = None, |
|
|
quant_mapping: Dict[str, Union[DiffQuantConfigMixin, "TransformersQuantConfigMixin"]] = None, |
|
|
): |
|
|
self.quant_backend = quant_backend |
|
|
|
|
|
self.quant_kwargs = quant_kwargs or {} |
|
|
self.components_to_quantize = components_to_quantize |
|
|
self.quant_mapping = quant_mapping |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def post_init(self): |
|
|
quant_mapping = self.quant_mapping |
|
|
self.is_granular = True if quant_mapping is not None else False |
|
|
|
|
|
self._validate_init_args() |
|
|
|
|
|
def _validate_init_args(self): |
|
|
if self.quant_backend and self.quant_mapping: |
|
|
raise ValueError("Both `quant_backend` and `quant_mapping` cannot be specified at the same time.") |
|
|
|
|
|
if not self.quant_mapping and not self.quant_backend: |
|
|
raise ValueError("Must provide a `quant_backend` when not providing a `quant_mapping`.") |
|
|
|
|
|
if not self.quant_kwargs and not self.quant_mapping: |
|
|
raise ValueError("Both `quant_kwargs` and `quant_mapping` cannot be None.") |
|
|
|
|
|
if self.quant_backend is not None: |
|
|
self._validate_init_kwargs_in_backends() |
|
|
|
|
|
if self.quant_mapping is not None: |
|
|
self._validate_quant_mapping_args() |
|
|
|
|
|
def _validate_init_kwargs_in_backends(self): |
|
|
quant_backend = self.quant_backend |
|
|
|
|
|
self._check_backend_availability(quant_backend) |
|
|
|
|
|
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list() |
|
|
|
|
|
if quant_config_mapping_transformers is not None: |
|
|
init_kwargs_transformers = inspect.signature(quant_config_mapping_transformers[quant_backend].__init__) |
|
|
init_kwargs_transformers = {name for name in init_kwargs_transformers.parameters if name != "self"} |
|
|
else: |
|
|
init_kwargs_transformers = None |
|
|
|
|
|
init_kwargs_diffusers = inspect.signature(quant_config_mapping_diffusers[quant_backend].__init__) |
|
|
init_kwargs_diffusers = {name for name in init_kwargs_diffusers.parameters if name != "self"} |
|
|
|
|
|
if init_kwargs_transformers != init_kwargs_diffusers: |
|
|
raise ValueError( |
|
|
"The signatures of the __init__ methods of the quantization config classes in `diffusers` and `transformers` don't match. " |
|
|
f"Please provide a `quant_mapping` instead, in the {self.__class__.__name__} class. Refer to [the docs](https://huggingface.co/docs/diffusers/main/en/quantization/overview#pipeline-level-quantization) to learn more about how " |
|
|
"this mapping would look like." |
|
|
) |
|
|
|
|
|
def _validate_quant_mapping_args(self): |
|
|
quant_mapping = self.quant_mapping |
|
|
transformers_map, diffusers_map = self._get_quant_config_list() |
|
|
|
|
|
available_transformers = list(transformers_map.values()) if transformers_map else None |
|
|
available_diffusers = list(diffusers_map.values()) |
|
|
|
|
|
for module_name, config in quant_mapping.items(): |
|
|
if any(isinstance(config, cfg) for cfg in available_diffusers): |
|
|
continue |
|
|
|
|
|
if available_transformers and any(isinstance(config, cfg) for cfg in available_transformers): |
|
|
continue |
|
|
|
|
|
if available_transformers: |
|
|
raise ValueError( |
|
|
f"Provided config for module_name={module_name} could not be found. " |
|
|
f"Available diffusers configs: {available_diffusers}; " |
|
|
f"Available transformers configs: {available_transformers}." |
|
|
) |
|
|
else: |
|
|
raise ValueError( |
|
|
f"Provided config for module_name={module_name} could not be found. " |
|
|
f"Available diffusers configs: {available_diffusers}." |
|
|
) |
|
|
|
|
|
def _check_backend_availability(self, quant_backend: str): |
|
|
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list() |
|
|
|
|
|
available_backends_transformers = ( |
|
|
list(quant_config_mapping_transformers.keys()) if quant_config_mapping_transformers else None |
|
|
) |
|
|
available_backends_diffusers = list(quant_config_mapping_diffusers.keys()) |
|
|
|
|
|
if ( |
|
|
available_backends_transformers and quant_backend not in available_backends_transformers |
|
|
) or quant_backend not in quant_config_mapping_diffusers: |
|
|
error_message = f"Provided quant_backend={quant_backend} was not found." |
|
|
if available_backends_transformers: |
|
|
error_message += f"\nAvailable ones (transformers): {available_backends_transformers}." |
|
|
error_message += f"\nAvailable ones (diffusers): {available_backends_diffusers}." |
|
|
raise ValueError(error_message) |
|
|
|
|
|
def _resolve_quant_config(self, is_diffusers: bool = True, module_name: str = None): |
|
|
quant_config_mapping_transformers, quant_config_mapping_diffusers = self._get_quant_config_list() |
|
|
|
|
|
quant_mapping = self.quant_mapping |
|
|
components_to_quantize = self.components_to_quantize |
|
|
|
|
|
|
|
|
if self.is_granular and module_name in quant_mapping: |
|
|
logger.debug(f"Initializing quantization config class for {module_name}.") |
|
|
config = quant_mapping[module_name] |
|
|
return config |
|
|
|
|
|
|
|
|
else: |
|
|
should_quantize = False |
|
|
|
|
|
if components_to_quantize and module_name in components_to_quantize: |
|
|
should_quantize = True |
|
|
|
|
|
elif not self.is_granular and not components_to_quantize: |
|
|
should_quantize = True |
|
|
|
|
|
if should_quantize: |
|
|
logger.debug(f"Initializing quantization config class for {module_name}.") |
|
|
mapping_to_use = quant_config_mapping_diffusers if is_diffusers else quant_config_mapping_transformers |
|
|
quant_config_cls = mapping_to_use[self.quant_backend] |
|
|
quant_kwargs = self.quant_kwargs |
|
|
return quant_config_cls(**quant_kwargs) |
|
|
|
|
|
|
|
|
return None |
|
|
|
|
|
def _get_quant_config_list(self): |
|
|
if is_transformers_available(): |
|
|
from transformers.quantizers.auto import ( |
|
|
AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_transformers, |
|
|
) |
|
|
else: |
|
|
quant_config_mapping_transformers = None |
|
|
|
|
|
from ..quantizers.auto import AUTO_QUANTIZATION_CONFIG_MAPPING as quant_config_mapping_diffusers |
|
|
|
|
|
return quant_config_mapping_transformers, quant_config_mapping_diffusers |
|
|
|