Spaces:
Runtime error
Runtime error
Cosmos-Predict2-2B
/
diffusers_repo
/src
/diffusers
/pipelines
/easyanimate
/pipeline_easyanimate_inpaint.py
| # Copyright 2025 The EasyAnimate team and The HuggingFace Team. | |
| # All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from PIL import Image | |
| from transformers import ( | |
| BertModel, | |
| BertTokenizer, | |
| Qwen2Tokenizer, | |
| Qwen2VLForConditionalGeneration, | |
| ) | |
| from ...callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from ...image_processor import VaeImageProcessor | |
| from ...models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel | |
| from ...pipelines.pipeline_utils import DiffusionPipeline | |
| from ...schedulers import FlowMatchEulerDiscreteScheduler | |
| from ...utils import is_torch_xla_available, logging, replace_example_docstring | |
| from ...utils.torch_utils import randn_tensor | |
| from ...video_processor import VideoProcessor | |
| from .pipeline_output import EasyAnimatePipelineOutput | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import EasyAnimateInpaintPipeline | |
| >>> from diffusers.pipelines.easyanimate.pipeline_easyanimate_inpaint import get_image_to_video_latent | |
| >>> from diffusers.utils import export_to_video, load_image | |
| >>> pipe = EasyAnimateInpaintPipeline.from_pretrained( | |
| ... "alibaba-pai/EasyAnimateV5.1-12b-zh-InP-diffusers", torch_dtype=torch.bfloat16 | |
| ... ) | |
| >>> pipe.to("cuda") | |
| >>> prompt = "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background. High quality, ultrarealistic detail and breath-taking movie-like camera shot." | |
| >>> validation_image_start = load_image( | |
| ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg" | |
| ... ) | |
| >>> validation_image_end = None | |
| >>> sample_size = (448, 576) | |
| >>> num_frames = 49 | |
| >>> input_video, input_video_mask = get_image_to_video_latent( | |
| ... [validation_image_start], validation_image_end, num_frames, sample_size | |
| ... ) | |
| >>> video = pipe( | |
| ... prompt, | |
| ... num_frames=num_frames, | |
| ... negative_prompt="Twisted body, limb deformities, text subtitles, comics, stillness, ugliness, errors, garbled text.", | |
| ... height=sample_size[0], | |
| ... width=sample_size[1], | |
| ... video=input_video, | |
| ... mask_video=input_video_mask, | |
| ... ) | |
| >>> export_to_video(video.frames[0], "output.mp4", fps=8) | |
| ``` | |
| """ | |
| def preprocess_image(image, sample_size): | |
| """ | |
| Preprocess a single image (PIL.Image, numpy.ndarray, or torch.Tensor) to a resized tensor. | |
| """ | |
| if isinstance(image, torch.Tensor): | |
| # If input is a tensor, assume it's in CHW format and resize using interpolation | |
| image = torch.nn.functional.interpolate( | |
| image.unsqueeze(0), size=sample_size, mode="bilinear", align_corners=False | |
| ).squeeze(0) | |
| elif isinstance(image, Image.Image): | |
| # If input is a PIL image, resize and convert to numpy array | |
| image = image.resize((sample_size[1], sample_size[0])) | |
| image = np.array(image) | |
| elif isinstance(image, np.ndarray): | |
| # If input is a numpy array, resize using PIL | |
| image = Image.fromarray(image).resize((sample_size[1], sample_size[0])) | |
| image = np.array(image) | |
| else: | |
| raise ValueError("Unsupported input type. Expected PIL.Image, numpy.ndarray, or torch.Tensor.") | |
| # Convert to tensor if not already | |
| if not isinstance(image, torch.Tensor): | |
| image = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0 # HWC -> CHW, normalize to [0, 1] | |
| return image | |
| def get_image_to_video_latent(validation_image_start, validation_image_end, num_frames, sample_size): | |
| """ | |
| Generate latent representations for video from start and end images. Inputs can be PIL.Image, numpy.ndarray, or | |
| torch.Tensor. | |
| """ | |
| input_video = None | |
| input_video_mask = None | |
| if validation_image_start is not None: | |
| # Preprocess the starting image(s) | |
| if isinstance(validation_image_start, list): | |
| image_start = [preprocess_image(img, sample_size) for img in validation_image_start] | |
| else: | |
| image_start = preprocess_image(validation_image_start, sample_size) | |
| # Create video tensor from the starting image(s) | |
| if isinstance(image_start, list): | |
| start_video = torch.cat( | |
| [img.unsqueeze(1).unsqueeze(0) for img in image_start], | |
| dim=2, | |
| ) | |
| input_video = torch.tile(start_video[:, :, :1], [1, 1, num_frames, 1, 1]) | |
| input_video[:, :, : len(image_start)] = start_video | |
| else: | |
| input_video = torch.tile( | |
| image_start.unsqueeze(1).unsqueeze(0), | |
| [1, 1, num_frames, 1, 1], | |
| ) | |
| # Normalize input video (already normalized in preprocess_image) | |
| # Create mask for the input video | |
| input_video_mask = torch.zeros_like(input_video[:, :1]) | |
| if isinstance(image_start, list): | |
| input_video_mask[:, :, len(image_start) :] = 255 | |
| else: | |
| input_video_mask[:, :, 1:] = 255 | |
| # Handle ending image(s) if provided | |
| if validation_image_end is not None: | |
| if isinstance(validation_image_end, list): | |
| image_end = [preprocess_image(img, sample_size) for img in validation_image_end] | |
| end_video = torch.cat( | |
| [img.unsqueeze(1).unsqueeze(0) for img in image_end], | |
| dim=2, | |
| ) | |
| input_video[:, :, -len(end_video) :] = end_video | |
| input_video_mask[:, :, -len(image_end) :] = 0 | |
| else: | |
| image_end = preprocess_image(validation_image_end, sample_size) | |
| input_video[:, :, -1:] = image_end.unsqueeze(1).unsqueeze(0) | |
| input_video_mask[:, :, -1:] = 0 | |
| elif validation_image_start is None: | |
| # If no starting image is provided, initialize empty tensors | |
| input_video = torch.zeros([1, 3, num_frames, sample_size[0], sample_size[1]]) | |
| input_video_mask = torch.ones([1, 1, num_frames, sample_size[0], sample_size[1]]) * 255 | |
| return input_video, input_video_mask | |
| # Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid | |
| def get_resize_crop_region_for_grid(src, tgt_width, tgt_height): | |
| tw = tgt_width | |
| th = tgt_height | |
| h, w = src | |
| r = h / w | |
| if r > (th / tw): | |
| resize_height = th | |
| resize_width = int(round(th / h * w)) | |
| else: | |
| resize_width = tw | |
| resize_height = int(round(tw / w * h)) | |
| crop_top = int(round((th - resize_height) / 2.0)) | |
| crop_left = int(round((tw - resize_width) / 2.0)) | |
| return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| r""" | |
| Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on | |
| Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://huggingface.co/papers/2305.08891). | |
| Args: | |
| noise_cfg (`torch.Tensor`): | |
| The predicted noise tensor for the guided diffusion process. | |
| noise_pred_text (`torch.Tensor`): | |
| The predicted noise tensor for the text-guided diffusion process. | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| A rescale factor applied to the noise predictions. | |
| Returns: | |
| noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor. | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| # Resize mask information in magvit | |
| def resize_mask(mask, latent, process_first_frame_only=True): | |
| latent_size = latent.size() | |
| if process_first_frame_only: | |
| target_size = list(latent_size[2:]) | |
| target_size[0] = 1 | |
| first_frame_resized = F.interpolate( | |
| mask[:, :, 0:1, :, :], size=target_size, mode="trilinear", align_corners=False | |
| ) | |
| target_size = list(latent_size[2:]) | |
| target_size[0] = target_size[0] - 1 | |
| if target_size[0] != 0: | |
| remaining_frames_resized = F.interpolate( | |
| mask[:, :, 1:, :, :], size=target_size, mode="trilinear", align_corners=False | |
| ) | |
| resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2) | |
| else: | |
| resized_mask = first_frame_resized | |
| else: | |
| target_size = list(latent_size[2:]) | |
| resized_mask = F.interpolate(mask, size=target_size, mode="trilinear", align_corners=False) | |
| return resized_mask | |
| ## Add noise to reference video | |
| def add_noise_to_reference_video(image, ratio=None, generator=None): | |
| if ratio is None: | |
| sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device) | |
| sigma = torch.exp(sigma).to(image.dtype) | |
| else: | |
| sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio | |
| if generator is not None: | |
| image_noise = ( | |
| torch.randn(image.size(), generator=generator, dtype=image.dtype, device=image.device) | |
| * sigma[:, None, None, None, None] | |
| ) | |
| else: | |
| image_noise = torch.randn_like(image) * sigma[:, None, None, None, None] | |
| image_noise = torch.where(image == -1, torch.zeros_like(image), image_noise) | |
| image = image + image_noise | |
| return image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class EasyAnimateInpaintPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-to-video generation using EasyAnimate. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| EasyAnimate uses one text encoder [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1. | |
| Args: | |
| vae ([`AutoencoderKLMagvit`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations. | |
| text_encoder (Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]): | |
| EasyAnimate uses [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1. | |
| tokenizer (Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]): | |
| A `Qwen2Tokenizer` or `BertTokenizer` to tokenize text. | |
| transformer ([`EasyAnimateTransformer3DModel`]): | |
| The EasyAnimate model designed by EasyAnimate Team. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->transformer->vae" | |
| _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKLMagvit, | |
| text_encoder: Union[Qwen2VLForConditionalGeneration, BertModel], | |
| tokenizer: Union[Qwen2Tokenizer, BertTokenizer], | |
| transformer: EasyAnimateTransformer3DModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.enable_text_attention_mask = ( | |
| self.transformer.config.enable_text_attention_mask | |
| if getattr(self, "transformer", None) is not None | |
| else True | |
| ) | |
| self.vae_spatial_compression_ratio = ( | |
| self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 8 | |
| ) | |
| self.vae_temporal_compression_ratio = ( | |
| self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 4 | |
| ) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_spatial_compression_ratio) | |
| self.mask_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_spatial_compression_ratio, | |
| do_normalize=False, | |
| do_binarize=True, | |
| do_convert_grayscale=True, | |
| ) | |
| self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio) | |
| # Copied from diffusers.pipelines.easyanimate.pipeline_easyanimate.EasyAnimatePipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: Union[str, List[str]], | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| max_sequence_length: int = 256, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| dtype (`torch.dtype`): | |
| torch dtype | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the prompt. Required when `prompt_embeds` is passed directly. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. | |
| max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt. | |
| """ | |
| dtype = dtype or self.text_encoder.dtype | |
| device = device or self.text_encoder.device | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| if isinstance(prompt, str): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "text", "text": prompt}], | |
| } | |
| ] | |
| else: | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "text", "text": _prompt}], | |
| } | |
| for _prompt in prompt | |
| ] | |
| text = [ | |
| self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages | |
| ] | |
| text_inputs = self.tokenizer( | |
| text=text, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| padding_side="right", | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs.to(self.text_encoder.device) | |
| text_input_ids = text_inputs.input_ids | |
| prompt_attention_mask = text_inputs.attention_mask | |
| if self.enable_text_attention_mask: | |
| # Inference: Generation of the output | |
| prompt_embeds = self.text_encoder( | |
| input_ids=text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True | |
| ).hidden_states[-2] | |
| else: | |
| raise ValueError("LLM needs attention_mask") | |
| prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| prompt_attention_mask = prompt_attention_mask.to(device=device) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| if negative_prompt is not None and isinstance(negative_prompt, str): | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "text", "text": negative_prompt}], | |
| } | |
| ] | |
| else: | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [{"type": "text", "text": _negative_prompt}], | |
| } | |
| for _negative_prompt in negative_prompt | |
| ] | |
| text = [ | |
| self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages | |
| ] | |
| text_inputs = self.tokenizer( | |
| text=text, | |
| padding="max_length", | |
| max_length=max_sequence_length, | |
| truncation=True, | |
| return_attention_mask=True, | |
| padding_side="right", | |
| return_tensors="pt", | |
| ) | |
| text_inputs = text_inputs.to(self.text_encoder.device) | |
| text_input_ids = text_inputs.input_ids | |
| negative_prompt_attention_mask = text_inputs.attention_mask | |
| if self.enable_text_attention_mask: | |
| # Inference: Generation of the output | |
| negative_prompt_embeds = self.text_encoder( | |
| input_ids=text_input_ids, | |
| attention_mask=negative_prompt_attention_mask, | |
| output_hidden_states=True, | |
| ).hidden_states[-2] | |
| else: | |
| raise ValueError("LLM needs attention_mask") | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| negative_prompt_attention_mask = negative_prompt_attention_mask.to(device=device) | |
| return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| prompt_attention_mask=None, | |
| negative_prompt_attention_mask=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if height % 16 != 0 or width % 16 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.") | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if prompt_embeds is not None and prompt_attention_mask is None: | |
| raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: | |
| raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| if hasattr(self.scheduler, "set_begin_index"): | |
| self.scheduler.set_begin_index(t_start * self.scheduler.order) | |
| return timesteps, num_inference_steps - t_start | |
| def prepare_mask_latents( | |
| self, | |
| mask, | |
| masked_image, | |
| batch_size, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| do_classifier_free_guidance, | |
| noise_aug_strength, | |
| ): | |
| # resize the mask to latents shape as we concatenate the mask to the latents | |
| # we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
| # and half precision | |
| if mask is not None: | |
| mask = mask.to(device=device, dtype=dtype) | |
| new_mask = [] | |
| bs = 1 | |
| for i in range(0, mask.shape[0], bs): | |
| mask_bs = mask[i : i + bs] | |
| mask_bs = self.vae.encode(mask_bs)[0] | |
| mask_bs = mask_bs.mode() | |
| new_mask.append(mask_bs) | |
| mask = torch.cat(new_mask, dim=0) | |
| mask = mask * self.vae.config.scaling_factor | |
| if masked_image is not None: | |
| masked_image = masked_image.to(device=device, dtype=dtype) | |
| if self.transformer.config.add_noise_in_inpaint_model: | |
| masked_image = add_noise_to_reference_video( | |
| masked_image, ratio=noise_aug_strength, generator=generator | |
| ) | |
| new_mask_pixel_values = [] | |
| bs = 1 | |
| for i in range(0, masked_image.shape[0], bs): | |
| mask_pixel_values_bs = masked_image[i : i + bs] | |
| mask_pixel_values_bs = self.vae.encode(mask_pixel_values_bs)[0] | |
| mask_pixel_values_bs = mask_pixel_values_bs.mode() | |
| new_mask_pixel_values.append(mask_pixel_values_bs) | |
| masked_image_latents = torch.cat(new_mask_pixel_values, dim=0) | |
| masked_image_latents = masked_image_latents * self.vae.config.scaling_factor | |
| # aligning device to prevent device errors when concating it with the latent model input | |
| masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | |
| else: | |
| masked_image_latents = None | |
| return mask, masked_image_latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| num_frames, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| video=None, | |
| timestep=None, | |
| is_strength_max=True, | |
| return_noise=False, | |
| return_video_latents=False, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| (num_frames - 1) // self.vae_temporal_compression_ratio + 1, | |
| height // self.vae_spatial_compression_ratio, | |
| width // self.vae_spatial_compression_ratio, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if return_video_latents or (latents is None and not is_strength_max): | |
| video = video.to(device=device, dtype=dtype) | |
| bs = 1 | |
| new_video = [] | |
| for i in range(0, video.shape[0], bs): | |
| video_bs = video[i : i + bs] | |
| video_bs = self.vae.encode(video_bs)[0] | |
| video_bs = video_bs.sample() | |
| new_video.append(video_bs) | |
| video = torch.cat(new_video, dim=0) | |
| video = video * self.vae.config.scaling_factor | |
| video_latents = video.repeat(batch_size // video.shape[0], 1, 1, 1, 1) | |
| video_latents = video_latents.to(device=device, dtype=dtype) | |
| if latents is None: | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # if strength is 1. then initialise the latents to noise, else initial to image + noise | |
| if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): | |
| latents = noise if is_strength_max else self.scheduler.scale_noise(video_latents, timestep, noise) | |
| else: | |
| latents = noise if is_strength_max else self.scheduler.add_noise(video_latents, noise, timestep) | |
| # if pure noise then scale the initial latents by the Scheduler's init sigma | |
| if hasattr(self.scheduler, "init_noise_sigma"): | |
| latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents | |
| else: | |
| if hasattr(self.scheduler, "init_noise_sigma"): | |
| noise = latents.to(device) | |
| latents = noise * self.scheduler.init_noise_sigma | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| outputs = (latents,) | |
| if return_noise: | |
| outputs += (noise,) | |
| if return_video_latents: | |
| outputs += (video_latents,) | |
| return outputs | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def guidance_rescale(self): | |
| return self._guidance_rescale | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| num_frames: Optional[int] = 49, | |
| video: Union[torch.FloatTensor] = None, | |
| mask_video: Union[torch.FloatTensor] = None, | |
| masked_video_latents: Union[torch.FloatTensor] = None, | |
| height: Optional[int] = 512, | |
| width: Optional[int] = 512, | |
| num_inference_steps: Optional[int] = 50, | |
| guidance_scale: Optional[float] = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: Optional[float] = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| prompt_attention_mask: Optional[torch.Tensor] = None, | |
| negative_prompt_attention_mask: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| guidance_rescale: float = 0.0, | |
| strength: float = 1.0, | |
| noise_aug_strength: float = 0.0563, | |
| timesteps: Optional[List[int]] = None, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation with HunyuanDiT. | |
| Examples: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| num_frames (`int`, *optional*): | |
| Length of the video to be generated in seconds. This parameter influences the number of frames and | |
| continuity of generated content. | |
| video (`torch.FloatTensor`, *optional*): | |
| A tensor representing an input video, which can be modified depending on the prompts provided. | |
| mask_video (`torch.FloatTensor`, *optional*): | |
| A tensor to specify areas of the video to be masked (omitted from generation). | |
| masked_video_latents (`torch.FloatTensor`, *optional*): | |
| Latents from masked portions of the video, utilized during image generation. | |
| height (`int`, *optional*): | |
| The height in pixels of the generated image or video frames. | |
| width (`int`, *optional*): | |
| The width in pixels of the generated image or video frames. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image but slower | |
| inference time. This parameter is modulated by `strength`. | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is effective when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to exclude in image generation. If not defined, you need to provide | |
| `negative_prompt_embeds`. This parameter is ignored when not using guidance (`guidance_scale < 1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| A parameter defined in the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies to the | |
| [`~schedulers.DDIMScheduler`] and is ignored in other schedulers. It adjusts noise level during the | |
| inference process. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) for setting | |
| random seeds which helps in making generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| A pre-computed latent representation which can be used to guide the generation process. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings, aiding in fine-tuning what should not be represented in the | |
| outputs. If not provided, embeddings are generated from the `negative_prompt` argument. | |
| prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask guiding the focus of the model on specific parts of the prompt text. Required when using | |
| `prompt_embeds`. | |
| negative_prompt_attention_mask (`torch.Tensor`, *optional*): | |
| Attention mask for the negative prompt, needed when `negative_prompt_embeds` are used. | |
| output_type (`str`, *optional*, defaults to `"latent"`): | |
| The output format of the generated image. Choose between `PIL.Image` and `np.array` to define how you | |
| want the results to be formatted. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| If set to `True`, a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] will be returned; | |
| otherwise, a tuple containing the generated images and safety flags will be returned. | |
| callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, | |
| *optional*): | |
| A callback function (or a list of them) that will be executed at the end of each denoising step, | |
| allowing for custom processing during generation. | |
| callback_on_step_end_tensor_inputs (`List[str]`, *optional*): | |
| Specifies which tensor inputs should be included in the callback function. If not defined, all tensor | |
| inputs will be passed, facilitating enhanced logging or monitoring of the generation process. | |
| guidance_rescale (`float`, *optional*, defaults to 0.0): | |
| Rescale parameter for adjusting noise configuration based on guidance rescale. Based on findings from | |
| [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://huggingface.co/papers/2305.08891). | |
| strength (`float`, *optional*, defaults to 1.0): | |
| Affects the overall styling or quality of the generated output. Values closer to 1 usually provide | |
| direct adherence to prompts. | |
| Examples: | |
| # Example usage of the function for generating images based on prompts. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| Returns either a structured output containing generated images and their metadata when `return_dict` is | |
| `True`, or a simpler tuple, where the first element is a list of generated images and the second | |
| element indicates if any of them contain "not-safe-for-work" (NSFW) content. | |
| """ | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| # 0. default height and width | |
| height = int(height // 16 * 16) | |
| width = int(width // 16 * 16) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._guidance_rescale = guidance_rescale | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| else: | |
| dtype = self.transformer.dtype | |
| # 3. Encode input prompt | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| prompt_attention_mask, | |
| negative_prompt_attention_mask, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| device=device, | |
| dtype=dtype, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| prompt_attention_mask=prompt_attention_mask, | |
| negative_prompt_attention_mask=negative_prompt_attention_mask, | |
| ) | |
| # 4. set timesteps | |
| if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps, mu=1 | |
| ) | |
| else: | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| timesteps, num_inference_steps = self.get_timesteps( | |
| num_inference_steps=num_inference_steps, strength=strength, device=device | |
| ) | |
| # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise | |
| is_strength_max = strength == 1.0 | |
| if video is not None: | |
| batch_size, channels, num_frames, height_video, width_video = video.shape | |
| init_video = self.image_processor.preprocess( | |
| video.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height_video, width_video), | |
| height=height, | |
| width=width, | |
| ) | |
| init_video = init_video.to(dtype=torch.float32) | |
| init_video = init_video.reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4) | |
| else: | |
| init_video = None | |
| # Prepare latent variables | |
| num_channels_latents = self.vae.config.latent_channels | |
| num_channels_transformer = self.transformer.config.in_channels | |
| return_image_latents = num_channels_transformer == num_channels_latents | |
| # 5. Prepare latents. | |
| latents_outputs = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| num_frames, | |
| dtype, | |
| device, | |
| generator, | |
| latents, | |
| video=init_video, | |
| timestep=latent_timestep, | |
| is_strength_max=is_strength_max, | |
| return_noise=True, | |
| return_video_latents=return_image_latents, | |
| ) | |
| if return_image_latents: | |
| latents, noise, image_latents = latents_outputs | |
| else: | |
| latents, noise = latents_outputs | |
| # 6. Prepare inpaint latents if it needs. | |
| if mask_video is not None: | |
| if (mask_video == 255).all(): | |
| mask = torch.zeros_like(latents).to(device, dtype) | |
| # Use zero latents if we want to t2v. | |
| if self.transformer.config.resize_inpaint_mask_directly: | |
| mask_latents = torch.zeros_like(latents)[:, :1].to(device, dtype) | |
| else: | |
| mask_latents = torch.zeros_like(latents).to(device, dtype) | |
| masked_video_latents = torch.zeros_like(latents).to(device, dtype) | |
| mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents | |
| masked_video_latents_input = ( | |
| torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents | |
| ) | |
| inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(dtype) | |
| else: | |
| # Prepare mask latent variables | |
| batch_size, channels, num_frames, height_video, width_video = mask_video.shape | |
| mask_condition = self.mask_processor.preprocess( | |
| mask_video.permute(0, 2, 1, 3, 4).reshape( | |
| batch_size * num_frames, channels, height_video, width_video | |
| ), | |
| height=height, | |
| width=width, | |
| ) | |
| mask_condition = mask_condition.to(dtype=torch.float32) | |
| mask_condition = mask_condition.reshape(batch_size, num_frames, channels, height, width).permute( | |
| 0, 2, 1, 3, 4 | |
| ) | |
| if num_channels_transformer != num_channels_latents: | |
| mask_condition_tile = torch.tile(mask_condition, [1, 3, 1, 1, 1]) | |
| if masked_video_latents is None: | |
| masked_video = ( | |
| init_video * (mask_condition_tile < 0.5) | |
| + torch.ones_like(init_video) * (mask_condition_tile > 0.5) * -1 | |
| ) | |
| else: | |
| masked_video = masked_video_latents | |
| if self.transformer.config.resize_inpaint_mask_directly: | |
| _, masked_video_latents = self.prepare_mask_latents( | |
| None, | |
| masked_video, | |
| batch_size, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| self.do_classifier_free_guidance, | |
| noise_aug_strength=noise_aug_strength, | |
| ) | |
| mask_latents = resize_mask( | |
| 1 - mask_condition, masked_video_latents, self.vae.config.cache_mag_vae | |
| ) | |
| mask_latents = mask_latents.to(device, dtype) * self.vae.config.scaling_factor | |
| else: | |
| mask_latents, masked_video_latents = self.prepare_mask_latents( | |
| mask_condition_tile, | |
| masked_video, | |
| batch_size, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| self.do_classifier_free_guidance, | |
| noise_aug_strength=noise_aug_strength, | |
| ) | |
| mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents | |
| masked_video_latents_input = ( | |
| torch.cat([masked_video_latents] * 2) | |
| if self.do_classifier_free_guidance | |
| else masked_video_latents | |
| ) | |
| inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(dtype) | |
| else: | |
| inpaint_latents = None | |
| mask = torch.tile(mask_condition, [1, num_channels_latents, 1, 1, 1]) | |
| mask = F.interpolate(mask, size=latents.size()[-3:], mode="trilinear", align_corners=True).to( | |
| device, dtype | |
| ) | |
| else: | |
| if num_channels_transformer != num_channels_latents: | |
| mask = torch.zeros_like(latents).to(device, dtype) | |
| if self.transformer.config.resize_inpaint_mask_directly: | |
| mask_latents = torch.zeros_like(latents)[:, :1].to(device, dtype) | |
| else: | |
| mask_latents = torch.zeros_like(latents).to(device, dtype) | |
| masked_video_latents = torch.zeros_like(latents).to(device, dtype) | |
| mask_input = torch.cat([mask_latents] * 2) if self.do_classifier_free_guidance else mask_latents | |
| masked_video_latents_input = ( | |
| torch.cat([masked_video_latents] * 2) if self.do_classifier_free_guidance else masked_video_latents | |
| ) | |
| inpaint_latents = torch.cat([mask_input, masked_video_latents_input], dim=1).to(dtype) | |
| else: | |
| mask = torch.zeros_like(init_video[:, :1]) | |
| mask = torch.tile(mask, [1, num_channels_latents, 1, 1, 1]) | |
| mask = F.interpolate(mask, size=latents.size()[-3:], mode="trilinear", align_corners=True).to( | |
| device, dtype | |
| ) | |
| inpaint_latents = None | |
| # Check that sizes of mask, masked image and latents match | |
| if num_channels_transformer != num_channels_latents: | |
| num_channels_mask = mask_latents.shape[1] | |
| num_channels_masked_image = masked_video_latents.shape[1] | |
| if ( | |
| num_channels_latents + num_channels_mask + num_channels_masked_image | |
| != self.transformer.config.in_channels | |
| ): | |
| raise ValueError( | |
| f"Incorrect configuration settings! The config of `pipeline.transformer`: {self.transformer.config} expects" | |
| f" {self.transformer.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
| f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | |
| f" = {num_channels_latents + num_channels_masked_image + num_channels_mask}. Please verify the config of" | |
| " `pipeline.transformer` or your `mask_image` or `image` input." | |
| ) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) | |
| # To latents.device | |
| prompt_embeds = prompt_embeds.to(device=device) | |
| prompt_attention_mask = prompt_attention_mask.to(device=device) | |
| # 8. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| if hasattr(self.scheduler, "scale_model_input"): | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input | |
| t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to( | |
| dtype=latent_model_input.dtype | |
| ) | |
| # predict the noise residual | |
| noise_pred = self.transformer( | |
| latent_model_input, | |
| t_expand, | |
| encoder_hidden_states=prompt_embeds, | |
| inpaint_latents=inpaint_latents, | |
| return_dict=False, | |
| )[0] | |
| if noise_pred.size()[1] != self.vae.config.latent_channels: | |
| noise_pred, _ = noise_pred.chunk(2, dim=1) | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if self.do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://huggingface.co/papers/2305.08891 | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if num_channels_transformer == num_channels_latents: | |
| init_latents_proper = image_latents | |
| init_mask = mask | |
| if i < len(timesteps) - 1: | |
| noise_timestep = timesteps[i + 1] | |
| if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler): | |
| init_latents_proper = self.scheduler.scale_noise( | |
| init_latents_proper, torch.tensor([noise_timestep], noise) | |
| ) | |
| else: | |
| init_latents_proper = self.scheduler.add_noise( | |
| init_latents_proper, noise, torch.tensor([noise_timestep]) | |
| ) | |
| latents = (1 - init_mask) * init_latents_proper + init_mask * latents | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| if not output_type == "latent": | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| video = self.vae.decode(latents, return_dict=False)[0] | |
| video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
| else: | |
| video = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return EasyAnimatePipelineOutput(frames=video) | |