Spaces:
Runtime error
Runtime error
| # Copyright 2024 OmniGen team and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from transformers import LlamaTokenizer | |
| from ...image_processor import PipelineImageInput, VaeImageProcessor | |
| from ...models.autoencoders import AutoencoderKL | |
| from ...models.transformers import OmniGenTransformer2DModel | |
| from ...schedulers import FlowMatchEulerDiscreteScheduler | |
| from ...utils import is_torch_xla_available, logging, replace_example_docstring | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| from .processor_omnigen import OmniGenMultiModalProcessor | |
| if is_torch_xla_available(): | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import OmniGenPipeline | |
| >>> pipe = OmniGenPipeline.from_pretrained("Shitao/OmniGen-v1-diffusers", torch_dtype=torch.bfloat16) | |
| >>> pipe.to("cuda") | |
| >>> prompt = "A cat holding a sign that says hello world" | |
| >>> # Depending on the variant being used, the pipeline call will slightly vary. | |
| >>> # Refer to the pipeline documentation for more details. | |
| >>> image = pipe(prompt, num_inference_steps=50, guidance_scale=2.5).images[0] | |
| >>> image.save("output.png") | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| r""" | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
| must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
| `num_inference_steps` and `sigmas` must be `None`. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
| `num_inference_steps` and `timesteps` must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class OmniGenPipeline( | |
| DiffusionPipeline, | |
| ): | |
| r""" | |
| The OmniGen pipeline for multimodal-to-image generation. | |
| Reference: https://huggingface.co/papers/2409.11340 | |
| Args: | |
| transformer ([`OmniGenTransformer2DModel`]): | |
| Autoregressive Transformer architecture for OmniGen. | |
| scheduler ([`FlowMatchEulerDiscreteScheduler`]): | |
| A scheduler to be used in combination with `transformer` to denoise the encoded image latents. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| tokenizer (`LlamaTokenizer`): | |
| Text tokenizer of class. | |
| [LlamaTokenizer](https://huggingface.co/docs/transformers/main/model_doc/llama#transformers.LlamaTokenizer). | |
| """ | |
| model_cpu_offload_seq = "transformer->vae" | |
| _optional_components = [] | |
| _callback_tensor_inputs = ["latents"] | |
| def __init__( | |
| self, | |
| transformer: OmniGenTransformer2DModel, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| vae: AutoencoderKL, | |
| tokenizer: LlamaTokenizer, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| tokenizer=tokenizer, | |
| transformer=transformer, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = ( | |
| 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) is not None else 8 | |
| ) | |
| # OmniGen latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible | |
| # by the patch size. So the vae scale factor is multiplied by the patch size to account for this | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2) | |
| self.multimodal_processor = OmniGenMultiModalProcessor(tokenizer, max_image_size=1024) | |
| self.tokenizer_max_length = ( | |
| self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 120000 | |
| ) | |
| self.default_sample_size = 128 | |
| def encode_input_images( | |
| self, | |
| input_pixel_values: List[torch.Tensor], | |
| device: Optional[torch.device] = None, | |
| dtype: Optional[torch.dtype] = None, | |
| ): | |
| """ | |
| get the continue embedding of input images by VAE | |
| Args: | |
| input_pixel_values: normalized pixel of input images | |
| device: | |
| Returns: torch.Tensor | |
| """ | |
| device = device or self._execution_device | |
| dtype = dtype or self.vae.dtype | |
| input_img_latents = [] | |
| for img in input_pixel_values: | |
| img = self.vae.encode(img.to(device, dtype)).latent_dist.sample().mul_(self.vae.config.scaling_factor) | |
| input_img_latents.append(img) | |
| return input_img_latents | |
| def check_inputs( | |
| self, | |
| prompt, | |
| input_images, | |
| height, | |
| width, | |
| use_input_image_size_as_output, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if input_images is not None: | |
| if len(input_images) != len(prompt): | |
| raise ValueError( | |
| f"The number of prompts: {len(prompt)} does not match the number of input images: {len(input_images)}." | |
| ) | |
| for i in range(len(input_images)): | |
| if input_images[i] is not None: | |
| if not all(f"<img><|image_{k + 1}|></img>" in prompt[i] for k in range(len(input_images[i]))): | |
| raise ValueError( | |
| f"prompt `{prompt[i]}` doesn't have enough placeholders for the input images `{input_images[i]}`" | |
| ) | |
| if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0: | |
| logger.warning( | |
| f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly" | |
| ) | |
| if use_input_image_size_as_output: | |
| if input_images is None or input_images[0] is None: | |
| raise ValueError( | |
| "`use_input_image_size_as_output` is set to True, but no input image was found. If you are performing a text-to-image task, please set it to False." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| def enable_vae_slicing(self): | |
| r""" | |
| Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to | |
| compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. | |
| """ | |
| self.vae.enable_slicing() | |
| def disable_vae_slicing(self): | |
| r""" | |
| Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_slicing() | |
| def enable_vae_tiling(self): | |
| r""" | |
| Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to | |
| compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow | |
| processing larger images. | |
| """ | |
| self.vae.enable_tiling() | |
| def disable_vae_tiling(self): | |
| r""" | |
| Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to | |
| computing decoding in one step. | |
| """ | |
| self.vae.disable_tiling() | |
| # Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.prepare_latents | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ): | |
| if latents is not None: | |
| return latents.to(device=device, dtype=dtype) | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| int(height) // self.vae_scale_factor, | |
| int(width) // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| return latents | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def interrupt(self): | |
| return self._interrupt | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| input_images: Union[PipelineImageInput, List[PipelineImageInput]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 50, | |
| max_input_image_size: int = 1024, | |
| timesteps: List[int] = None, | |
| guidance_scale: float = 2.5, | |
| img_guidance_scale: float = 1.6, | |
| use_input_image_size_as_output: bool = False, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If the input includes images, need to add | |
| placeholders `<img><|image_i|></img>` in the prompt to indicate the position of the i-th images. | |
| input_images (`PipelineImageInput` or `List[PipelineImageInput]`, *optional*): | |
| The list of input images. We will replace the "<|image_i|>" in prompt with the i-th image in list. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| max_input_image_size (`int`, *optional*, defaults to 1024): | |
| the maximum size of input image, which will be used to crop the input image to the maximum size | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
| in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
| passed will be used. Must be in descending order. | |
| guidance_scale (`float`, *optional*, defaults to 2.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion | |
| Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. | |
| of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting | |
| `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to | |
| the text `prompt`, usually at the expense of lower image quality. | |
| img_guidance_scale (`float`, *optional*, defaults to 1.6): | |
| Defined as equation 3 in [Instrucpix2pix](https://huggingface.co/papers/2211.09800). | |
| use_input_image_size_as_output (bool, defaults to False): | |
| whether to use the input image size as the output image size, which can be used for single-image input, | |
| e.g., image editing task | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned | |
| where the first element is a list with the generated images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| num_cfg = 2 if input_images is not None else 1 | |
| use_img_cfg = True if input_images is not None else False | |
| if isinstance(prompt, str): | |
| prompt = [prompt] | |
| input_images = [input_images] | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| input_images, | |
| height, | |
| width, | |
| use_input_image_size_as_output, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| batch_size = len(prompt) | |
| device = self._execution_device | |
| # 3. process multi-modal instructions | |
| if max_input_image_size != self.multimodal_processor.max_image_size: | |
| self.multimodal_processor.reset_max_image_size(max_image_size=max_input_image_size) | |
| processed_data = self.multimodal_processor( | |
| prompt, | |
| input_images, | |
| height=height, | |
| width=width, | |
| use_img_cfg=use_img_cfg, | |
| use_input_image_size_as_output=use_input_image_size_as_output, | |
| num_images_per_prompt=num_images_per_prompt, | |
| ) | |
| processed_data["input_ids"] = processed_data["input_ids"].to(device) | |
| processed_data["attention_mask"] = processed_data["attention_mask"].to(device) | |
| processed_data["position_ids"] = processed_data["position_ids"].to(device) | |
| # 4. Encode input images | |
| input_img_latents = self.encode_input_images(processed_data["input_pixel_values"], device=device) | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1, 0, num_inference_steps + 1)[:num_inference_steps] | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, num_inference_steps, device, timesteps, sigmas=sigmas | |
| ) | |
| self._num_timesteps = len(timesteps) | |
| # 6. Prepare latents | |
| transformer_dtype = self.transformer.dtype | |
| if use_input_image_size_as_output: | |
| height, width = processed_data["input_pixel_values"][0].shape[-2:] | |
| latent_channels = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| latent_channels, | |
| height, | |
| width, | |
| torch.float32, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 8. Denoising loop | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * (num_cfg + 1)) | |
| latent_model_input = latent_model_input.to(transformer_dtype) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep, | |
| input_ids=processed_data["input_ids"], | |
| input_img_latents=input_img_latents, | |
| input_image_sizes=processed_data["input_image_sizes"], | |
| attention_mask=processed_data["attention_mask"], | |
| position_ids=processed_data["position_ids"], | |
| return_dict=False, | |
| )[0] | |
| if num_cfg == 2: | |
| cond, uncond, img_cond = torch.split(noise_pred, len(noise_pred) // 3, dim=0) | |
| noise_pred = uncond + img_guidance_scale * (img_cond - uncond) + guidance_scale * (cond - img_cond) | |
| else: | |
| cond, uncond = torch.split(noise_pred, len(noise_pred) // 2, dim=0) | |
| noise_pred = uncond + guidance_scale * (cond - uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| progress_bar.update() | |
| if not output_type == "latent": | |
| latents = latents.to(self.vae.dtype) | |
| latents = latents / self.vae.config.scaling_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| else: | |
| image = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |