Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,658 Bytes
7758cff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import os
from posixpath import isfile
from re import A
import sys
import os.path as osp
from typing import List, Dict, Tuple, Optional, Union, Any
import yaml
from omegaconf import OmegaConf
import math
import librosa
import soundfile
import numpy as np
from einops import rearrange
import torch
import torch.nn.functional as F
from pydub import AudioSegment
from audio_separator.separator import Separator
from transformers import Wav2Vec2FeatureExtractor, HubertModel
from src.utils.rprint import rlog as log
from src.utils.util import resample_audio
from src.models.audio.wav2vec_modified import Wav2VecModel
from src.models.audio.hubert import HubertModel_ as HubertModel
def pad_audio(audio, audio_unit=320, pad_threshold=80):
batch_size, audio_len = audio.shape
n_units = audio_len // audio_unit
side_len = math.ceil((audio_unit * n_units + pad_threshold - audio_len) / 2)
if side_len >= 0:
reflect_len = side_len // 2
replicate_len = side_len % 2
if reflect_len > 0:
audio = F.pad(audio, (reflect_len, reflect_len), mode='reflect')
audio = F.pad(audio, (reflect_len, reflect_len), mode='reflect')
if replicate_len > 0:
audio = F.pad(audio, (1, 1), mode='replicate')
return audio
def cut_audio(audio_path: str, save_dir: str, length=60) -> List[str]:
"""Cut audio into sub-divisions and return subfile paths. Supports wav format.
Args:
audio_path (str): the source audio file path
save_dir (str): the save directory of sub-divisions
length (int, optional): The max length of each sub-division. Defaults to 60 secs.
Returns:
List[str]: the subfile paths
"""
audio_name = osp.basename(audio_path).split('.')[0]
audio = AudioSegment.from_wav(audio_path)
segment_length = length * 1000. # pydub uses milliseconds
num_segments = math.ceil(len(audio) / segment_length)
os.makedirs(save_dir, exist_ok=True)
audio_list = []
if num_segments > 1:
for i in range(num_segments):
start_time = i * segment_length
end_time = min((i + 1) * segment_length, len(audio))
segment = audio[start_time:end_time]
path = osp.join(save_dir, f"{audio_name}_segment_{i+1}.wav")
audio_list.append(path)
segment.export(path, format="wav")
else:
audio_list = [audio_path]
return audio_list
class AudioProcessor(object):
def __init__(self, cfg_path: str, is_training: bool = False, device_id=0) -> None:
cfg = OmegaConf.load(cfg_path)
self.cfg = cfg
self.is_training = is_training
log("========================================= Audio Processer =========================================")
log(OmegaConf.to_yaml(cfg))
# setting device
self.device_id = device_id
self.use_half = cfg.device_params.flag_use_half_precision
if cfg.device_params.flag_force_cpu:
self.device = 'cpu'
else:
try:
if torch.backends.mps.is_available():
self.device = 'mps'
else:
self.device = 'cuda:' + str(self.device_id)
except:
self.device = 'cuda:' + str(self.device_id)
# init audio separator
self.audio_separator = None
self.cache_dir = cfg.cache_dir
self.tmp_dir = cfg.tmp_dir
self.use_audio_separator = cfg.model_params.use_audio_separator
self.audio_separator_name = cfg.model_params.audio_separator_name
self.audio_separator_path = cfg.model_weights.audio_separator_path
self.set_audio_separator(cfg.cache_dir)
# load audio encoder, wav2vec or hubert
self.model_name = cfg.model_params.model_name
self.is_chinese = cfg.model_params.is_chinese
self.audio_encoder, self.feature_extractor = self.load_model(
model_name = cfg.model_params.model_name,
model_type = cfg.model_params.model_type,
is_chinese = cfg.model_params.is_chinese,
)
self.only_last_features = cfg.model_params.only_last_features
if cfg.model_params.only_last_features:
self.feature_shape = (1, 768)
else:
self.feature_shape = (12, 768) # features of 12 blocks
# init data params
self.sample_strategy = cfg.data_params.sample_strategy
self.sample_rate = cfg.data_params.sample_rate
self.fps = cfg.data_params.fps
self.audio_unit = cfg.data_params.sample_rate / cfg.data_params.fps # num of audio samples per frame
self.max_length = cfg.data_params.max_length
self.subclip_len = cfg.data_params.sub_clip_length
self.save_to_cpu = cfg.data_params.save_to_cpu
self.pad_mode = cfg.data_params.audio_pad_mode
log("========================================= Audio Processer: Done =========================================")
def load_model(self, model_name: str="wav2vec", model_type: str="base", is_chinese: bool = False):
assert model_name in ["wav2vec", "hubert"], f"Unknown audio model {model_name}, only support wav2vec or hubert"
assert model_type in ["base", "large"], f"Unknown audio model type {model_type}, only support base or large"
if model_name == "wav2vec":
# load wav2vec model weights
if is_chinese:
if model_type == "base":
model_weight_path = self.cfg.model_weights.wav2vec_path.chinese.base
else:
model_weight_path = self.cfg.model_weights.wav2vec_path.chinese.large
else:
if model_type == "base":
model_weight_path = self.cfg.model_weights.wav2vec_path.default.base
else:
model_weight_path = self.cfg.model_weights.wav2vec_path.default.large
if model_weight_path is None:
raise ValueError(f"model_weight_path is None")
audio_encoder = Wav2VecModel.from_pretrained(model_weight_path, local_files_only=True).to(device=self.device)
else:
if is_chinese:
if model_type == "base":
model_weight_path = self.cfg.model_weights.hubert_path.chinese.base
else:
model_weight_path = self.cfg.model_weights.hubert_path.chinese.large
else:
if model_type == "base":
model_weight_path = self.cfg.model_weights.hubert_path.default.base
else:
model_weight_path = self.cfg.model_weights.hubert_path.default.large
if model_weight_path is None:
raise ValueError(f"model_weight_path is None")
audio_encoder = HubertModel.from_pretrained(model_weight_path, local_files_only=True).to(device=self.device)
log(f"{model_name}-{model_type}-chinese-{is_chinese} model has beed loaded from {model_weight_path}")
total_params = sum(p.numel() for p in audio_encoder.parameters())
print('Number of parameter: % .4fM' % (total_params / 1e6))
# weights initialization
audio_encoder.feature_extractor._freeze_parameters()
if not self.cfg.model_params.is_original:
frozen_layers = [0, 1]
for name, param in audio_encoder.named_parameters():
if name.startswith("feature_projection"):
param.requires_grad = False
if name.startswith("encoder.layers"):
layer = int(name.split(".")[2])
if layer in frozen_layers:
param.requires_grad = False
audio_encoder = audio_encoder.to(self.device)
if self.use_half:
audio_encoder = audio_encoder.half()
audio_encoder.eval()
# feature extractor
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_weight_path)
return audio_encoder, feature_extractor
def set_audio_separator(self, output_dir: str) -> None:
del self.audio_separator
if self.audio_separator_name is not None and self.use_audio_separator:
try:
os.makedirs(output_dir, exist_ok=True)
except OSError as _:
print("Fail to create the output cache dir.")
self.audio_separator = Separator(
output_dir=output_dir,
output_single_stem="vocals",
model_file_dir=self.audio_separator_path,
)
self.audio_separator.load_model(self.audio_separator_name)
assert self.audio_separator.model_instance is not None, "Fail to load audio separate model."
else:
self.audio_separator=None
log("Use audio directly without vocals seperator.")
def seperate_audio(self, audio_path: str, output_dir: Union[str, None] = None) -> str:
if output_dir is not None:
if output_dir != self.cache_dir:
# reload audio separator
self.set_audio_separator(output_dir)
if self.audio_separator is not None:
# 1. separate vocals
# TODO: process in memory
try:
outputs = self.audio_separator.separate(audio_path)
if len(outputs) <= 0:
raise RuntimeError("Audio separate failed.")
vocal_audio_file = outputs[0]
vocal_audio_name, _ = os.path.splitext(vocal_audio_file)
vocal_audio_file = os.path.join(self.audio_separator.output_dir, vocal_audio_file)
vocal_audio_file = resample_audio(vocal_audio_file, os.path.join(self.audio_separator.output_dir, f"{vocal_audio_name}-16k.wav"), self.sample_rate)
except Exception as e:
log(f"Fail to separate vocals from {audio_path}, error info [{e}]")
vocal_audio_file=audio_path
else:
vocal_audio_file=audio_path
return vocal_audio_file
def load_audio(self, audio_path: str, mono: bool = True, duration: Optional[float] = None) -> Any:
try:
audio_data, sampling_rate = librosa.load(audio_path, sr=self.sample_rate, mono=mono, duration=duration)
except Exception as e:
raise RuntimeError(f"Fail to load audio from {audio_path}, error info [{e}]")
return audio_data, sampling_rate
def prepare_audio_data(self, audio_data: Union[np.ndarray, torch.Tensor], n_frames: Optional[int]=None) -> Tuple[List[Any], int]:
"""Prepare audio data for processing.
"""
#print(f"==========> Using Wav2Vec2FeatureExtractor to extract audio features")
audio_data = np.squeeze(self.feature_extractor(audio_data, sampling_rate=self.sample_rate).input_values)
clip_len = int(len(audio_data) / self.audio_unit)
if n_frames is not None:
if abs(n_frames - clip_len) > 7:
log(f"The number of frames must be close to the clip length (in 280ms), got {n_frames} and {clip_len}")
return [], n_frames
clip_len = n_frames
else:
n_frames = clip_len
if isinstance(audio_data, np.ndarray):
audio_data = torch.from_numpy(audio_data).float().to(self.device)
assert audio_data.ndim == 1, 'Audio must be 1D tensor.'
# padding
# padding audio to fit the clip length
n_audio_samples = round(self.audio_unit * clip_len)
n_padding_audio_samples = n_audio_samples - len(audio_data)
n_padding_frames = math.ceil(n_padding_audio_samples / self.audio_unit)
if n_padding_audio_samples > 0:
if self.pad_mode == 'zero':
padding_value = 0
elif self.pad_mode == 'replicate':
padding_value = float(audio_data[-1])
else:
raise ValueError(f'Unknown pad mode: {self.pad_mode}')
audio_data = F.pad(audio_data, (0, n_padding_audio_samples), value=padding_value)
# devide audio into sub-divisions for saving GPU memory
audio_segments = []
if clip_len <= self.subclip_len:
n_subdivision = 1
subclip_len = clip_len
else:
n_subdivision = math.ceil(clip_len / self.subclip_len)
subclip_len = self.subclip_len
for i in range(0, n_subdivision):
start_idx = i * subclip_len
end_idx = min(start_idx + subclip_len, clip_len)
# debug
#log(f"[{i+1}/{n_subdivision}] data index [{round(start_idx * self.audio_unit)}, {round(end_idx * self.audio_unit)})")
audio_segments.append(
{
"data": audio_data[round(start_idx * self.audio_unit):round(end_idx * self.audio_unit)].unsqueeze(0),
"start_idx": start_idx,
"end_idx": end_idx,
"length": end_idx - start_idx
}
)
return audio_segments, n_frames
def get_audio_embedding(self, audio, clip_len: int) -> torch.Tensor:
if audio.ndim == 2:
# Extract audio features
assert audio.shape[1] == 16000 * clip_len / self.fps, \
f'Incorrect audio length {audio.shape[1]}'
# Extract audio features
if self.use_half:
audio = audio.half()
embeddings = self.audio_encoder(
pad_audio(audio), seq_len=clip_len, sample_strategy=self.sample_strategy, output_hidden_states=True
) # (N, L, 768)
assert len(embeddings) > 0, "Fail to extract audio embedding"
if self.only_last_features:
audio_emb = embeddings.last_hidden_state.squeeze(0)
else:
audio_emb = torch.stack(
embeddings.hidden_states[1:], dim=1
).squeeze(0)
audio_emb = rearrange(audio_emb, "b s d -> s b d")
elif audio.ndim == 3:
assert audio.shape[1] == clip_len, f'Incorrect audio feature length {audio.shape[1]}'
audio_emb = audio
else:
raise ValueError(f'Incorrect audio input shape {audio.shape}')
return audio_emb
def get_audio_embeddings(self, audio_segments: List[Any]) -> Optional[torch.Tensor]:
audio_embs = []
for audio_segment in audio_segments:
if self.is_training:
audio_emb = self.get_audio_embedding(audio_segment["data"], audio_segment["length"])
else:
with torch.no_grad():
audio_emb = self.get_audio_embedding(audio_segment["data"], audio_segment["length"])
audio_emb = audio_emb.cpu() if self.save_to_cpu else audio_emb
audio_embs.append(audio_emb)
#log(f"audio segment [{audio_segment['start_idx']}, {audio_segment['end_idx']}) has been processed.")
if len(audio_embs) == 0:
return None
audio_emb = torch.cat(audio_embs, dim=0)
return audio_emb
def preprocess(
self,
audio_path: str,
n_frames: Optional[int] = None,
duration: Optional[float] = None,
need_seperate: bool = False
):
""" Preprocess a WAV audio file by separating the vocals from the background and resampling it to a 16 kHz sample rate.
The separated vocal track is then converted into wav2vec2 for further processing or analysis.
"""
if need_seperate:
vocal_audio_file = self.seperate_audio(audio_path)
else:
vocal_audio_file = audio_path
audio_data, sampling_rate = self.load_audio(vocal_audio_file, duration=duration)
assert sampling_rate == 16000, "The sample rate of audio must be 16000"
audio_segments, n_frames = self.prepare_audio_data(audio_data, n_frames)
audio_emb = self.get_audio_embeddings(audio_segments)
if audio_emb is None:
log(f"{audio_path} has been processed, but no audio embedding, set as 'None'.")
#else:
#log(f"{audio_path} has been processed, audio embedding shape {audio_emb.shape}.")
return audio_emb, n_frames
def preprocess_long(
self,
audio_path: str,
need_seperate: bool = False
):
audio_list = cut_audio(audio_path, self.tmp_dir, length=self.max_length)
audio_emb_list = []
l = 0
for idx, audio_path in enumerate(audio_list):
padding = (idx+1) == len(audio_list)
emb, length = self.preprocess(audio_path, need_seperate=need_seperate)
audio_emb_list.append(emb)
log(f"Processing audio {idx+1}/{len(audio_list)}, path: {audio_path} length: {length}")
l += length
audio_emb = torch.cat(audio_emb_list)
audio_length = l
# remove tmp file
if len(audio_list) > 1:
for audio_path in audio_list:
os.remove(audio_path)
return audio_emb, audio_length
def add_silent_audio(self, audio_path: str, silent_audio_path: Optional[str] = None, add_duration: float = 1., linear_fusion=False, mode="post"):
# mode, pre, post, both
assert mode in ["pre", "post", "both"], f"Unkown mode: {mode}, only support pre, post, both"
if silent_audio_path is None:
return audio_path, 0
else:
audio_dir = osp.dirname(audio_path)
audio_name = osp.basename(audio_path)
temp_audio_path = osp.join(audio_dir, f"tmp_{audio_name}")
if osp.isfile(temp_audio_path):
os.remove(temp_audio_path)
audio, sr1 = librosa.load(audio_path, mono=True, sr=16000)
# denoise
audio = librosa.effects.preemphasis(audio) # enhance voice
# load silent audio
silent_audio, sr2 = librosa.load(silent_audio_path, mono=True, sr=16000)
silent_audio = silent_audio[:int(add_duration*sr2)]
if linear_fusion:
short_len = min(len(audio), len(silent_audio))
fusion_ratio = np.linspace(0, 1.0, num=short_len)
# get pre padding audio
pre_pad_audio = fusion_ratio * silent_audio[:short_len] + (1 - fusion_ratio) * audio[:short_len]
if short_len < len(silent_audio):
pre_pad_audio = np.hstack((pre_pad_audio, silent_audio[short_len:]))
pre_pad_audio = np.flip(pre_pad_audio, axis=0)
# get post padding audio
post_pad_audio = (1 - fusion_ratio) * silent_audio[-short_len:] + fusion_ratio * audio[-short_len:]
if short_len < len(silent_audio):
post_pad_audio = np.hstack((silent_audio[:-short_len], post_pad_audio))
post_pad_audio = np.flip(post_pad_audio, axis=0)
else:
pre_pad_audio = silent_audio
post_pad_audio = silent_audio
# padding audio
if mode == "both":
combined_audio = np.hstack((pre_pad_audio, audio, post_pad_audio))
elif mode == "pre":
combined_audio = np.hstack((pre_pad_audio, audio))
else:
combined_audio = np.hstack((audio, post_pad_audio))
add_nframes = math.floor(add_duration * sr2 / self.audio_unit)
#print(f"audio length: {len(audio)}, pre_pad_audio length: {len(pre_pad_audio)}, post_pad_audio length: {len(post_pad_audio)}, combined_length: {len(combined_audio)}, total add {add_nframes*2} frames")
#print(f"audio duration: {librosa.get_duration(audio, sr=sr1)}, silent duration: {librosa.get_duration(silent_audio, sr=sr2)}, combined duration: {librosa.get_duration(combined_audio, sr=sr2)}")
soundfile.write(temp_audio_path, combined_audio, sr2)
return temp_audio_path, add_nframes
def get_long_audio_emb(self, audio_path: str) -> torch.Tensor:
audio_emb, length = self.preprocess_long(audio_path)
log(f"Load audio from {osp.realpath(audio_path)} done, audio_emb shape: {audio_emb.shape}.")
return audio_emb
def __enter__(self):
return self
|