Spaces:
Running
on
Zero
Running
on
Zero
File size: 67,725 Bytes
7758cff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 |
"""
Motion feature extractor
"""
import os
import os.path as osp
import sys
import pickle
from omegaconf import OmegaConf
import torch
from PIL import Image
import numpy as np
import cv2
import imageio
import pickle
import time
from decord import VideoReader # must after import torch
from rich.progress import track
sys.path.append(osp.dirname(osp.dirname(osp.dirname(osp.dirname(osp.dirname(osp.realpath(__file__)))))))
from src.datasets.preprocess.extract_features.face_segmentation import build_face_parser, get_face_mask, vis_parsing_maps
from src.thirdparty.liveportrait.src.utils.helper import load_model, concat_feat
from src.thirdparty.liveportrait.src.utils.io import load_image_rgb, resize_to_limit, load_video
from src.thirdparty.liveportrait.src.utils.video import get_fps, images2video, add_audio_to_video
from src.thirdparty.liveportrait.src.utils.camera import headpose_pred_to_degree, get_rotation_matrix
from src.thirdparty.liveportrait.src.utils.cropper import Cropper
from src.thirdparty.liveportrait.src.utils.crop import prepare_paste_back, paste_back, paste_back_with_face_mask
from src.thirdparty.liveportrait.src.utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
from src.thirdparty.liveportrait.src.utils.helper import mkdir, basename, dct2device, is_image, calc_motion_multiplier
from src.utils.filter import smooth as ksmooth
from src.utils.filter import smooth_
from skimage.metrics import peak_signal_noise_ratio
import warnings
def psnr(imgs1, imgs2):
psnrs = []
for img1, img2 in zip(imgs1, imgs2):
psnr = peak_signal_noise_ratio(img1, img2, data_range=255)
psnrs.append(psnr)
return psnrs
def suffix(filename):
"""a.jpg -> jpg"""
pos = filename.rfind(".")
if pos == -1:
return ""
return filename[pos + 1:]
def dump(wfp, obj):
wd = osp.split(wfp)[0]
if wd != "" and not osp.exists(wd):
mkdir(wd)
_suffix = suffix(wfp)
if _suffix == "npy":
np.save(wfp, obj)
elif _suffix == "pkl":
pickle.dump(obj, open(wfp, "wb"))
else:
raise Exception("Unknown type: {}".format(_suffix))
def load(fp):
suffix_ = suffix(fp)
if suffix_ == "npy":
return np.load(fp)
elif suffix_ == "pkl":
return pickle.load(open(fp, "rb"))
else:
raise Exception(f"Unknown type: {suffix}")
def remove_suffix(filepath):
"""a/b/c.jpg -> a/b/c"""
return osp.join(osp.dirname(filepath), basename(filepath))
class MotionProcesser(object):
def __init__(self, cfg_path, device_id=0) -> None:
device = f"cuda:{device_id}"
cfg = OmegaConf.load(cfg_path)
print(f"Load cfg from {osp.realpath(cfg_path)} done.")
print(f"=============================== Driven CFG ===============================")
print(OmegaConf.to_yaml(cfg))
print(f"=============================== ========== ===============================")
models_config = OmegaConf.load(cfg.models_config)
# 1. init appearance feature extractor
self.appearance_feature_extractor = load_model(
cfg.appearance_feature_extractor_path,
models_config,
device,
'appearance_feature_extractor'
)
print(f'1. Load appearance_feature_extractor from {osp.realpath(cfg.appearance_feature_extractor_path)} done.')
# 2. # init motion extractor
self.motion_extractor = load_model(
cfg.motion_extractor_path,
models_config,
device,
'motion_extractor'
)
print(f'2. Load motion_extractor from {osp.realpath(cfg.motion_extractor_path)} done.')
# 3. init S and R
if cfg.stitching_retargeting_module_path is not None and osp.exists(cfg.stitching_retargeting_module_path):
self.stitching_retargeting_module = load_model(
cfg.stitching_retargeting_module_path,
models_config,
device,
'stitching_retargeting_module'
)
print(f'3. Load stitching_retargeting_module from {osp.realpath(cfg.stitching_retargeting_module_path)} done.')
else:
self.stitching_retargeting_module = None
# 4. init motion warper
self.warping_module = load_model(
cfg.warping_module_path,
models_config,
device,
'warping_module'
)
print(f"4. Load warping_module from {osp.realpath(cfg.warping_module_path)} done.")
# 5. init decoder
self.spade_generator = load_model(
cfg.spade_generator_path,
models_config,
device,
'spade_generator'
)
print(f"Load generator from {osp.realpath(cfg.spade_generator_path)} done.")
# # Optimize for inference
self.compile = cfg.flag_do_torch_compile
if self.compile:
torch._dynamo.config.suppress_errors = True # Suppress errors and fall back to eager execution
self.warping_module = torch.compile(self.warping_module, mode='max-autotune')
self.spade_generator = torch.compile(self.spade_generator, mode='max-autotune')
# 6. init cropper
crop_cfg = OmegaConf.load(cfg.crop_cfg)
self.cropper = Cropper(crop_cfg=crop_cfg, image_type="human_face", device_id=device_id)
self.cfg = cfg
self.models_config = models_config
self.device = device
# 7. load crop mask
self.mask_crop = cv2.imread(cfg.mask_crop, cv2.IMREAD_COLOR)
# 8. load lib array
with open(cfg.lip_array, 'rb') as f:
self.lip_array = pickle.load(f)
# 9. load face parser
self.face_parser, self.to_tensor = build_face_parser(weight_path=cfg.face_parser_weight_path, resnet_weight_path=cfg.resnet_weight_path, device_id=device_id)
def inference_ctx(self):
ctx = torch.autocast(device_type=self.device[:4], dtype=torch.float16,
enabled=self.cfg.flag_use_half_precision)
return ctx
@torch.no_grad()
def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor:
""" get the appearance feature of the image by F
x: Bx3xHxW, normalized to 0~1
"""
with self.inference_ctx():
feature_3d = self.appearance_feature_extractor(x)
return feature_3d.float()
@torch.no_grad()
def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict:
""" get the implicit keypoint information
x: Bx3xHxW, normalized to 0~1
flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape
return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp'
"""
with self.inference_ctx():
kp_info = self.motion_extractor(x)
if self.cfg.flag_use_half_precision:
# float the dict
for k, v in kp_info.items():
if isinstance(v, torch.Tensor):
kp_info[k] = v.float()
return kp_info
@torch.no_grad()
def refine_kp(self, kp_info):
bs = kp_info['exp'].shape[0]
kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1
kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1
kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1
kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) # BxNx3
if 'kp' in kp_info.keys():
kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) # BxNx3
return kp_info
@torch.no_grad()
def transform_keypoint(self, kp_info: dict):
"""
transform the implicit keypoints with the pose, shift, and expression deformation
kp: BxNx3
"""
kp = kp_info['kp'] # (bs, k, 3)
pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll']
t, exp = kp_info['t'], kp_info['exp']
scale = kp_info['scale']
pitch = headpose_pred_to_degree(pitch)
yaw = headpose_pred_to_degree(yaw)
roll = headpose_pred_to_degree(roll)
bs = kp.shape[0]
if kp.ndim == 2:
num_kp = kp.shape[1] // 3 # Bx(num_kpx3)
else:
num_kp = kp.shape[1] # Bxnum_kpx3
rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3)
# Eqn.2: s * (R * x_c,s + exp) + t
kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3)
kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3)
kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty
return kp_transformed
@torch.no_grad()
def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor:
""" conduct the stitching
kp_source: Bxnum_kpx3
kp_driving: Bxnum_kpx3
"""
if self.stitching_retargeting_module is not None:
bs, num_kp = kp_source.shape[:2]
kp_driving_new = kp_driving.clone()
# stich
feat_stiching = concat_feat(kp_source, kp_driving_new)
delta = self.stitching_retargeting_module['stitching'](feat_stiching) # Bxnum_kpx3
delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3
delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2
kp_driving_new += delta_exp
kp_driving_new[..., :2] += delta_tx_ty
return kp_driving_new
return kp_driving
@torch.no_grad()
def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> dict[str, torch.Tensor]:
""" get the image after the warping of the implicit keypoints
feature_3d: Bx32x16x64x64, feature volume
kp_source: BxNx3
kp_driving: BxNx3
"""
# The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i))
with self.inference_ctx():
if self.compile:
# Mark the beginning of a new CUDA Graph step
torch.compiler.cudagraph_mark_step_begin()
# get decoder input
ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving)
# print(f"=============================================================================")
# for out_key, out_value in ret_dct.items():
# if isinstance(out_value, str) or isinstance(out_value, int) or isinstance(out_value, float):
# print(f"{out_key}: {out_value}")
# elif isinstance(out_value, torch.Tensor):
# print(f"{out_key}: tensor shape {out_value.shape}, min: {torch.min(out_value)}, max: {torch.max(out_value)}, mean: {torch.mean(out_value)}, std: {torch.std(out_value)}")
# else:
# print(f"{out_key}: data type {type(out_value)}")
# decode
ret_dct['out'] = self.spade_generator(feature=ret_dct['out'])
# float the dict
if self.cfg.flag_use_half_precision:
for k, v in ret_dct.items():
if isinstance(v, torch.Tensor):
ret_dct[k] = v.float()
return ret_dct
def parse_output(self, out: torch.Tensor) -> np.ndarray:
""" construct the output as standard
return: 1xHxWx3, uint8
"""
out = np.transpose(out.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3
out = np.clip(out, 0, 1) # clip to 0~1
out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255
return out
@torch.no_grad()
def calc_combined_eye_ratio(self, c_d_eyes_i, source_lmk):
c_s_eyes = calc_eye_close_ratio(source_lmk[None])
c_s_eyes_tensor = torch.from_numpy(c_s_eyes).float().to(self.device)
c_d_eyes_i_tensor = torch.Tensor([c_d_eyes_i[0][0]]).reshape(1, 1).to(self.device)
# [c_s,eyes, c_d,eyes,i]
combined_eye_ratio_tensor = torch.cat([c_s_eyes_tensor, c_d_eyes_i_tensor], dim=1)
return combined_eye_ratio_tensor
@torch.no_grad()
def calc_combined_lip_ratio(self, c_d_lip_i, source_lmk):
c_s_lip = calc_lip_close_ratio(source_lmk[None])
c_s_lip_tensor = torch.from_numpy(c_s_lip).float().to(self.device)
c_d_lip_i_tensor = torch.Tensor([c_d_lip_i[0]]).to(self.device).reshape(1, 1) # 1x1
# [c_s,lip, c_d,lip,i]
combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2
return combined_lip_ratio_tensor
def calc_ratio(self, lmk_lst):
input_eye_ratio_lst = []
input_lip_ratio_lst = []
for lmk in lmk_lst:
# for eyes retargeting
input_eye_ratio_lst.append(calc_eye_close_ratio(lmk[None]))
# for lip retargeting
input_lip_ratio_lst.append(calc_lip_close_ratio(lmk[None]))
return input_eye_ratio_lst, input_lip_ratio_lst
@torch.no_grad()
def retarget_lip(self, kp_source: torch.Tensor, lip_close_ratio: torch.Tensor) -> torch.Tensor:
"""
kp_source: BxNx3
lip_close_ratio: Bx2
Return: Bx(3*num_kp)
"""
feat_lip = concat_feat(kp_source, lip_close_ratio)
delta = self.stitching_retargeting_module['lip'](feat_lip)
return delta.reshape(-1, kp_source.shape[1], 3)
@torch.no_grad()
def retarget_eye(self, kp_source: torch.Tensor, eye_close_ratio: torch.Tensor) -> torch.Tensor:
"""
kp_source: BxNx3
eye_close_ratio: Bx3
Return: Bx(3*num_kp)
"""
feat_eye = concat_feat(kp_source, eye_close_ratio)
delta = self.stitching_retargeting_module['eye'](feat_eye)
return delta.reshape(-1, kp_source.shape[1], 3)
def crop_image(self, img, do_crop=False):
######## process source info ########
if do_crop:
crop_info = self.cropper.crop_source_image(img, self.cropper.crop_cfg)
if crop_info is None:
raise Exception("No face detected in the source image!")
lmk = crop_info['lmk_crop']
img_crop_256x256 = crop_info['img_crop_256x256']
else:
crop_info = None
lmk = self.cropper.calc_lmk_from_cropped_image(img)
img_crop_256x256 = cv2.resize(img, (256, 256)) # force to resize to 256x256
return img_crop_256x256, lmk, crop_info
def crop_source_video(self, img_lst, do_crop=False):
if do_crop:
ret_s = self.cropper.crop_source_video(img_lst, self.cropper.crop_cfg)
print(f'Source video is cropped, {len(ret_s["frame_crop_lst"])} frames are processed.')
img_crop_256x256_lst, lmk_crop_lst, M_c2o_lst = ret_s['frame_crop_lst'], ret_s['lmk_crop_lst'], ret_s['M_c2o_lst']
else:
M_c2o_lst = None
lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(img_lst)
img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in img_lst] # force to resize to 256x256
return img_crop_256x256_lst, lmk_crop_lst, M_c2o_lst
def crop_driving_videos(self, img_lst, do_crop=False):
if do_crop:
ret_d = self.cropper.crop_driving_video(img_lst)
print(f'Driving video is cropped, {len(ret_d["frame_crop_lst"])} frames are processed.')
img_crop_lst, lmk_crop_lst = ret_d['frame_crop_lst'], ret_d['lmk_crop_lst']
img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in img_lst]
else:
lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(img_lst)
img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in img_lst] # force to resize to 256x256
return img_crop_256x256_lst, lmk_crop_lst
def prepare_source(self, src_img):
""" construct the input as standard
img: HxWx3, uint8, 256x256
"""
# processing source image to tensor
h, w = src_img.shape[:2]
if h != self.cfg.input_height or w != self.cfg.input_width:
x = cv2.resize(src_img, (self.cfg.input_width, self.cfg.input_height))
else:
x = src_img.copy()
if x.ndim == 3:
x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
elif x.ndim == 4:
x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
else:
raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
x = np.clip(x, 0, 1) # clip to 0~1
x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
x = x.to(self.device)
# extract features
I_s = x
f_s = self.extract_feature_3d(I_s)
x_s_info = self.get_kp_info(I_s)
return f_s, x_s_info
def process_clips(self, clips):
""" construct the input as standard
clips: NxBxHxWx3, uint8
"""
# resize to 256 x 256
imgs = []
for img in clips:
h, w = img.shape[:2]
if h != self.cfg.input_height or w != self.cfg.input_width:
img = cv2.resize(img, (self.cfg.input_width, self.cfg.input_height))
else:
img = img.copy()
imgs.append(img)
# processing video frames to tensor
if isinstance(imgs, list):
_imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1
elif isinstance(imgs, np.ndarray):
_imgs = imgs
else:
raise ValueError(f'imgs type error: {type(imgs)}')
y = _imgs.astype(np.float32) / 255.
y = np.clip(y, 0, 1) # clip to 0~1
y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW
y = y.to(self.device)
return y
def prepare_driving_videos(self, vid_frames, feat_type="tensor"):
""" get driving kp infos
vid_frames: image list of HxWx3, uint8
"""
# extract features
total_len = len(vid_frames)
kp_infos = {"pitch": [], "yaw": [], "roll": [], "t": [], "exp": [], "scale": [], "kp": []}
for start_idx in range(0, total_len, self.cfg.batch_size):
frames = vid_frames[start_idx: min(start_idx + self.cfg.batch_size, total_len)]
frames = self.process_clips(frames).squeeze(1)
kp_info = self.get_kp_info(frames)
for k, v in kp_info.items():
kp_infos[k].append(v)
# combine the kp_infos
for k, v in kp_infos.items():
kp_infos[k] = torch.cat(v, dim=0)
if feat_type == "np":
for k, v in kp_infos.items():
kp_infos[k] = v.cpu().numpy()
return kp_infos
def get_driving_template(self, kp_infos, smooth=False, dtype="pt_tensor"):
kp_infos = self.refine_kp(kp_infos)
motion_list = []
n_frames = len(kp_infos["exp"])
for idx in range(n_frames):
exp = kp_infos["exp"][idx]
scale = kp_infos["scale"][idx]
t = kp_infos["t"][idx]
pitch = kp_infos["pitch"][idx]
yaw = kp_infos["yaw"][idx]
roll = kp_infos["roll"][idx]
R = get_rotation_matrix(pitch, yaw, roll)
R = R.reshape(1, 3, 3)
exp = exp.reshape(1, 21, 3)
scale = scale.reshape(1, 1)
t = t.reshape(1, 3)
pitch = pitch.reshape(1, 1)
yaw = yaw.reshape(1, 1)
roll = roll.reshape(1, 1)
if dtype == "np":
R = R.cpu().numpy().astype(np.float32)
exp = exp.cpu().numpy().astype(np.float32)
scale = scale.cpu().numpy().astype(np.float32)
t = t.cpu().numpy().astype(np.float32)
pitch = pitch.cpu().numpy().astype(np.float32)
yaw = yaw.cpu().numpy().astype(np.float32)
roll = roll.cpu().numpy().astype(np.float32)
motion_list.append(
{"exp": exp, "scale": scale, "R": R, "t": t, "pitch": pitch, "yaw": yaw, "roll": roll}
)
tgt_motion = {'n_frames': n_frames, 'output_fps': 25, 'motion': motion_list}
if smooth:
print("Smoothing motion sequence...")
tgt_motion = smooth_(tgt_motion, method="ema")
return tgt_motion
@torch.no_grad()
def update_delta_new_eyeball_direction(self, eyeball_direction_x, eyeball_direction_y, delta_new, **kwargs):
if eyeball_direction_x > 0:
delta_new[0, 11, 0] += eyeball_direction_x * 0.0007
delta_new[0, 15, 0] += eyeball_direction_x * 0.001
else:
delta_new[0, 11, 0] += eyeball_direction_x * 0.001
delta_new[0, 15, 0] += eyeball_direction_x * 0.0007
delta_new[0, 11, 1] += eyeball_direction_y * -0.001
delta_new[0, 15, 1] += eyeball_direction_y * -0.001
blink = -eyeball_direction_y / 2.
delta_new[0, 11, 1] += blink * -0.001
delta_new[0, 13, 1] += blink * 0.0003
delta_new[0, 15, 1] += blink * -0.001
delta_new[0, 16, 1] += blink * 0.0003
return delta_new
def driven(self, f_s, x_s_info, s_lmk, c_s_eyes_lst, kp_infos, c_d_eyes_lst=None, c_d_lip_lst=None, smooth=False):
# source kp info
x_d_i_news=[]
x_ss=[]
f_ss=[]
x_s_info = self.refine_kp(x_s_info)
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
x_s = self.transform_keypoint(x_s_info)
x_c_s = x_s_info["kp"]
# driving kp infos
driving_template_dct = self.get_driving_template(kp_infos, smooth)
n_frames = driving_template_dct['n_frames']
# driving params
flag_normalize_lip = self.cfg.flag_normalize_lip
flag_relative_motion = self.cfg.flag_relative_motion
flag_source_video_eye_retargeting = self.cfg.flag_source_video_eye_retargeting
lip_normalize_threshold = self.cfg.lip_normalize_threshold
source_video_eye_retargeting_threshold = self.cfg.source_video_eye_retargeting_threshold
animation_region = self.cfg.animation_region
driving_option = self.cfg.driving_option
flag_stitching = self.cfg.flag_stitching
flag_eye_retargeting = self.cfg.flag_eye_retargeting
flag_lip_retargeting = self.cfg.flag_lip_retargeting
driving_multiplier = self.cfg.driving_multiplier
lib_multiplier = self.cfg.lib_multiplier
# let lip-open scalar to be 0 at first
lip_delta_before_animation, eye_delta_before_animation = None, None
if flag_normalize_lip and flag_relative_motion and s_lmk is not None:
c_d_lip_before_animation = [0.]
combined_lip_ratio_tensor_before_animation = self.calc_combined_lip_ratio(c_d_lip_before_animation, s_lmk)
if combined_lip_ratio_tensor_before_animation[0][0] >= lip_normalize_threshold:
lip_delta_before_animation = self.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
# let eye-open scalar to be the same as the first frame if the latter is eye-open state
if flag_source_video_eye_retargeting and s_lmk is not None:
combined_eye_ratio_tensor_frame_zero = c_s_eyes_lst[0]
c_d_eye_before_animation_frame_zero = [[combined_eye_ratio_tensor_frame_zero[0][:2].mean()]]
if c_d_eye_before_animation_frame_zero[0][0] < source_video_eye_retargeting_threshold:
c_d_eye_before_animation_frame_zero = [[0.39]]
combined_eye_ratio_tensor_before_animation = self.calc_combined_eye_ratio(c_d_eye_before_animation_frame_zero, s_lmk)
eye_delta_before_animation = self.retarget_eye(x_s, combined_eye_ratio_tensor_before_animation)
# animate
I_p_lst = []
for i in range(n_frames):
x_d_i_info = driving_template_dct['motion'][i]
x_d_i_info = dct2device(x_d_i_info, self.device)
# R
R_d_i = x_d_i_info['R']
if i == 0: # cache the first frame
R_d_0 = R_d_i
x_d_0_info = x_d_i_info.copy()
# enhance lip
# if i > 0:
# for lip_idx in [6, 12, 14, 17, 19, 20]:
# x_d_i_info['exp'][:, lip_idx, :] = x_d_0_info['exp'][:, lip_idx, :] + (x_d_i_info['exp'][:, lip_idx, :] - x_d_0_info['exp'][:, lip_idx, :]) * lib_multiplier
# normalize eye_ball, TODO
x_d_i_info['exp'] = self.update_delta_new_eyeball_direction(0, -5, x_d_i_info['exp'])
# debug
#print(f"frame {i:03d}, src scale {x_s_info['scale']}, 0 scale {x_d_0_info['scale']}, i scale {x_d_i_info['scale']}")
# delta
delta_new = x_s_info['exp'].clone()
if flag_relative_motion:
# R
if animation_region == "all" or animation_region == "pose":
R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
else:
R_new = R_s
# exp
if animation_region == "all" or animation_region == "exp":
delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
elif animation_region == "lip":
for lip_idx in [6, 12, 14, 17, 19, 20]:
delta_new[:, lip_idx, :] = (x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp']))[:, lip_idx, :]
elif animation_region == "eyes":
for eyes_idx in [11, 13, 15, 16, 18]:
delta_new[:, eyes_idx, :] = (x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp']))[:, eyes_idx, :]
# scale
if animation_region == "all":
scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
else:
scale_new = x_s_info['scale']
# translation
if animation_region == "all" or animation_region == "pose":
t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
else:
t_new = x_s_info['t']
else:
# R
if animation_region == "all" or animation_region == "pose":
R_new = R_d_i
else:
R_new = R_s
# exp
if animation_region == "all" or animation_region == "exp":
EYE_IDX=[1,2,6,11,12,13,14,15,16,17,18,19,20]
delta_new[:, EYE_IDX, :] = x_d_i_info['exp'][:, EYE_IDX, :]
# for idx in [1,2,6,11,12,13,14,15,16,17,18,19,20]:
# delta_new[:, idx, :] = x_d_i_info['exp'][:, idx, :]
delta_new[:, 3:5, 1] = x_d_i_info['exp'][:, 3:5, 1]
delta_new[:, 5, 2] = x_d_i_info['exp'][:, 5, 2]
delta_new[:, 8, 2] = x_d_i_info['exp'][:, 8, 2]
delta_new[:, 9, 1:] = x_d_i_info['exp'][:, 9, 1:]
elif animation_region == "lip":
for lip_idx in [6, 12, 14, 17, 19, 20]:
delta_new[:, lip_idx, :] = x_d_i_info['exp'][:, lip_idx, :]
elif animation_region == "eyes":
for eyes_idx in [11, 13, 15, 16, 18]:
delta_new[:, eyes_idx, :] = x_d_i_info['exp'][:, eyes_idx, :]
# scale
scale_new = x_s_info['scale']
# translation
if animation_region == "all" or animation_region == "pose":
t_new = x_d_i_info['t']
else:
t_new = x_s_info['t']
t_new[..., 2].fill_(0) # zero tz
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
if flag_relative_motion and driving_option == "expression-friendly":
if i == 0:
x_d_0_new = x_d_i_new
motion_multiplier = calc_motion_multiplier(x_s, x_d_0_new)
x_d_diff = (x_d_i_new - x_d_0_new) * motion_multiplier
x_d_i_new = x_d_diff + x_s
# Algorithm 1 in Liveportrait:
if not flag_stitching and not flag_eye_retargeting and not flag_lip_retargeting:
# without stitching or retargeting
if flag_normalize_lip and lip_delta_before_animation is not None:
x_d_i_new += lip_delta_before_animation
if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
else:
pass
elif flag_stitching and not flag_eye_retargeting and not flag_lip_retargeting:
# with stitching and without retargeting
if flag_normalize_lip and lip_delta_before_animation is not None:
x_d_i_new = self.stitching(x_s, x_d_i_new) + lip_delta_before_animation
else:
x_d_i_new = self.stitching(x_s, x_d_i_new)
if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
else:
eyes_delta, lip_delta = None, None
if flag_eye_retargeting and s_lmk is not None and c_d_eyes_lst is not None:
c_d_eyes_i = c_d_eyes_lst[i]
combined_eye_ratio_tensor = self.calc_combined_eye_ratio(c_d_eyes_i, s_lmk)
eyes_delta = self.retarget_eye(x_s, combined_eye_ratio_tensor)
if flag_lip_retargeting and s_lmk is not None and c_d_lip_lst is not None:
c_d_lip_i = c_d_lip_lst[i]
combined_lip_ratio_tensor = self.calc_combined_lip_ratio(c_d_lip_i, s_lmk)
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
lip_delta = self.retarget_lip(x_s, combined_lip_ratio_tensor)
if flag_relative_motion: # use x_s
x_d_i_new = x_s + \
(eyes_delta if eyes_delta is not None else 0) + \
(lip_delta if lip_delta is not None else 0)
else: # use x_d,i
x_d_i_new = x_d_i_new + \
(eyes_delta if eyes_delta is not None else 0) + \
(lip_delta if lip_delta is not None else 0)
if flag_stitching:
x_d_i_new = self.stitching(x_s, x_d_i_new)
x_d_i_new = x_s + (x_d_i_new - x_s) * driving_multiplier
x_d_i_news.append(x_d_i_new)
f_s_s= f_s.expand(n_frames, *f_s.shape[1:])
x_s_s = x_s.expand(n_frames, *x_s.shape[1:])
x_d_i_new = torch.cat(x_d_i_news, dim=0)
for start in range(0, n_frames, 100):
end = min(start + 100,n_frames)
with torch.no_grad(), torch.autocast('cuda'):
out = self.warp_decode(f_s_s[start:end], x_s_s[start:end], x_d_i_new[start:end])
I_p_lst.append(out['out'])
I_p=torch.cat(I_p_lst, dim=0)
I_p_i = self.parse_output(I_p)
return I_p_i
def driven_debug(self, f_s, x_s_info, s_lmk, c_s_eyes_lst, driving_template_dct, c_d_eyes_lst=None, c_d_lip_lst=None):
# source kp info
x_s_info = self.refine_kp(x_s_info)
x_c_s = x_s_info["kp"]
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
x_s = self.transform_keypoint(x_s_info)
n_frames = driving_template_dct['n_frames']
# driving params
flag_normalize_lip = self.cfg.flag_normalize_lip
flag_relative_motion = self.cfg.flag_relative_motion
flag_source_video_eye_retargeting = self.cfg.flag_source_video_eye_retargeting
lip_normalize_threshold = self.cfg.lip_normalize_threshold
source_video_eye_retargeting_threshold = self.cfg.source_video_eye_retargeting_threshold
animation_region = self.cfg.animation_region
driving_option = self.cfg.driving_option
flag_stitching = self.cfg.flag_stitching
flag_eye_retargeting = self.cfg.flag_eye_retargeting
flag_lip_retargeting = self.cfg.flag_lip_retargeting
driving_multiplier = self.cfg.driving_multiplier
# let lip-open scalar to be 0 at first
lip_delta_before_animation, eye_delta_before_animation = None, None
if flag_normalize_lip and flag_relative_motion and s_lmk is not None:
c_d_lip_before_animation = [0.]
combined_lip_ratio_tensor_before_animation = self.calc_combined_lip_ratio(c_d_lip_before_animation, s_lmk)
if combined_lip_ratio_tensor_before_animation[0][0] >= lip_normalize_threshold:
lip_delta_before_animation = self.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
# let eye-open scalar to be the same as the first frame if the latter is eye-open state
if flag_source_video_eye_retargeting and s_lmk is not None:
combined_eye_ratio_tensor_frame_zero = c_s_eyes_lst[0]
c_d_eye_before_animation_frame_zero = [[combined_eye_ratio_tensor_frame_zero[0][:2].mean()]]
if c_d_eye_before_animation_frame_zero[0][0] < source_video_eye_retargeting_threshold:
c_d_eye_before_animation_frame_zero = [[0.39]]
combined_eye_ratio_tensor_before_animation = self.calc_combined_eye_ratio(c_d_eye_before_animation_frame_zero, s_lmk)
eye_delta_before_animation = self.retarget_eye(x_s, combined_eye_ratio_tensor_before_animation)
# animate
I_p_lst = []
for i in range(n_frames):
x_d_i_info = driving_template_dct['motion'][i]
x_d_i_info = dct2device(x_d_i_info, self.device)
# R
R_d_i = x_d_i_info['R'] if 'R' in x_d_i_info.keys() else x_d_i_info['R_d'] # compatible with previous keys
if i == 0: # cache the first frame
R_d_0 = R_d_i
x_d_0_info = x_d_i_info.copy()
# debug
#print(f"frame {i:03d}, src scale {x_s_info['scale']}, 0 scale {x_d_0_info['scale']}, i scale {x_d_i_info['scale']}")
# delta
delta_new = x_s_info['exp'].clone()
if flag_relative_motion:
# R
if animation_region == "all" or animation_region == "pose":
R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
else:
R_new = R_s
# exp
if animation_region == "all" or animation_region == "exp":
delta_new = x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
elif animation_region == "lip":
for lip_idx in [6, 12, 14, 17, 19, 20]:
delta_new[:, lip_idx, :] = (x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp']))[:, lip_idx, :]
elif animation_region == "eyes":
for eyes_idx in [11, 13, 15, 16, 18]:
delta_new[:, eyes_idx, :] = (x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp']))[:, eyes_idx, :]
# scale
if animation_region == "all":
scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
else:
scale_new = x_s_info['scale']
# translation
if animation_region == "all" or animation_region == "pose":
t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
else:
t_new = x_s_info['t']
else:
# R
if animation_region == "all" or animation_region == "pose":
R_new = R_d_i
else:
R_new = R_s
# exp
if animation_region == "all" or animation_region == "exp":
for idx in [1,2,6,11,12,13,14,15,16,17,18,19,20]:
delta_new[:, idx, :] = x_d_i_info['exp'][:, idx, :]
delta_new[:, 3:5, 1] = x_d_i_info['exp'][:, 3:5, 1]
delta_new[:, 5, 2] = x_d_i_info['exp'][:, 5, 2]
delta_new[:, 8, 2] = x_d_i_info['exp'][:, 8, 2]
delta_new[:, 9, 1:] = x_d_i_info['exp'][:, 9, 1:]
elif animation_region == "lip":
for lip_idx in [6, 12, 14, 17, 19, 20]:
delta_new[:, lip_idx, :] = x_d_i_info['exp'][:, lip_idx, :]
elif animation_region == "eyes":
for eyes_idx in [11, 13, 15, 16, 18]:
delta_new[:, eyes_idx, :] = x_d_i_info['exp'][:, eyes_idx, :]
# scale
scale_new = x_s_info['scale']
# translation
if animation_region == "all" or animation_region == "pose":
t_new = x_d_i_info['t']
else:
t_new = x_s_info['t']
t_new[..., 2].fill_(0) # zero tz
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
if flag_relative_motion and driving_option == "expression-friendly":
if i == 0:
x_d_0_new = x_d_i_new
motion_multiplier = calc_motion_multiplier(x_s, x_d_0_new)
x_d_diff = (x_d_i_new - x_d_0_new) * motion_multiplier
x_d_i_new = x_d_diff + x_s
# Algorithm 1 in Liveportrait:
if not flag_stitching and not flag_eye_retargeting and not flag_lip_retargeting:
# without stitching or retargeting
if flag_normalize_lip and lip_delta_before_animation is not None:
x_d_i_new += lip_delta_before_animation
if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
else:
pass
elif flag_stitching and not flag_eye_retargeting and not flag_lip_retargeting:
# with stitching and without retargeting
if flag_normalize_lip and lip_delta_before_animation is not None:
x_d_i_new = self.stitching(x_s, x_d_i_new) + lip_delta_before_animation
else:
x_d_i_new = self.stitching(x_s, x_d_i_new)
if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
else:
eyes_delta, lip_delta = None, None
if flag_eye_retargeting and s_lmk is not None and c_d_eyes_lst is not None:
c_d_eyes_i = c_d_eyes_lst[i]
combined_eye_ratio_tensor = self.calc_combined_eye_ratio(c_d_eyes_i, s_lmk)
eyes_delta = self.retarget_eye(x_s, combined_eye_ratio_tensor)
if flag_lip_retargeting and s_lmk is not None and c_d_lip_lst is not None:
c_d_lip_i = c_d_lip_lst[i]
combined_lip_ratio_tensor = self.calc_combined_lip_ratio(c_d_lip_i, s_lmk)
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
lip_delta = self.retarget_lip(x_s, combined_lip_ratio_tensor)
if flag_relative_motion: # use x_s
x_d_i_new = x_s + \
(eyes_delta if eyes_delta is not None else 0) + \
(lip_delta if lip_delta is not None else 0)
else: # use x_d,i
x_d_i_new = x_d_i_new + \
(eyes_delta if eyes_delta is not None else 0) + \
(lip_delta if lip_delta is not None else 0)
if flag_stitching:
x_d_i_new = self.stitching(x_s, x_d_i_new)
x_d_i_new = x_s + (x_d_i_new - x_s) * driving_multiplier
out = self.warp_decode(f_s, x_s, x_d_i_new)
I_p_i = self.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
return I_p_lst
def read_image(self, image_path: str) -> list:
img_rgb = load_image_rgb(image_path)
img_rgb = resize_to_limit(img_rgb, self.cfg.source_max_dim, self.cfg.source_division)
source_rgb_list = [img_rgb]
print(f"Load image from {osp.realpath(image_path)} done.")
return source_rgb_list
def read_video(self, video_path: str, interval=None) -> list:
vr = VideoReader(video_path)
if interval is not None:
video_frames = vr.get_batch(np.arange(0, len(vr), interval)).numpy()
else:
video_frames = [vr[0].numpy(), vr[len(vr) // 2].numpy(), vr[-1].numpy()]
vr.seek(0)
driving_rgb_list = []
for video_frame in video_frames:
# h, w = video_frame.shape[:2]
# if h != self.cfg.output_height or w != self.cfg.output_width:
# video_frame = cv2.resize(video_frame, (self.cfg.output_height, self.cfg.output_width))
driving_rgb_list.append(video_frame)
return driving_rgb_list
def prepare_videos(self, imgs) -> torch.Tensor:
""" construct the input as standard
imgs: NxBxHxWx3, uint8
"""
if isinstance(imgs, list):
_imgs = np.array(imgs)[..., np.newaxis] # TxHxWx3x1
elif isinstance(imgs, np.ndarray):
_imgs = imgs
else:
raise ValueError(f'imgs type error: {type(imgs)}')
y = _imgs.astype(np.float32) / 255.
y = np.clip(y, 0, 1) # clip to 0~1
y = torch.from_numpy(y).permute(0, 4, 3, 1, 2) # TxHxWx3x1 -> Tx1x3xHxW
y = y.to(self.device)
return y
def make_motion_template(self, I_lst, c_eyes_lst, c_lip_lst, **kwargs):
n_frames = I_lst.shape[0]
template_dct = {
'n_frames': n_frames,
'output_fps': kwargs.get('output_fps', 25),
'motion': [],
'c_eyes_lst': [],
'c_lip_lst': [],
}
for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
# collect s, R, δ and t for inference
I_i = I_lst[i]
x_i_info = self.refine_kp(self.get_kp_info(I_i))
x_s = self.transform_keypoint(x_i_info)
R_i = get_rotation_matrix(x_i_info['pitch'], x_i_info['yaw'], x_i_info['roll'])
item_dct = {
'scale': x_i_info['scale'].cpu().numpy().astype(np.float32),
'R': R_i.cpu().numpy().astype(np.float32),
'exp': x_i_info['exp'].cpu().numpy().astype(np.float32),
't': x_i_info['t'].cpu().numpy().astype(np.float32),
'kp': x_i_info['kp'].cpu().numpy().astype(np.float32),
'x_s': x_s.cpu().numpy().astype(np.float32),
}
template_dct['motion'].append(item_dct)
c_eyes = c_eyes_lst[i].astype(np.float32)
template_dct['c_eyes_lst'].append(c_eyes)
c_lip = c_lip_lst[i].astype(np.float32)
template_dct['c_lip_lst'].append(c_lip)
return template_dct
def load_template(self, wfp_template):
print(f"Load from template: {wfp_template}, NOT the video, so the cropping video and audio are both NULL.")
driving_template_dct = load(wfp_template)
c_d_eyes_lst = driving_template_dct['c_eyes_lst'] if 'c_eyes_lst' in driving_template_dct.keys() else driving_template_dct['c_d_eyes_lst'] # compatible with previous keys
c_d_lip_lst = driving_template_dct['c_lip_lst'] if 'c_lip_lst' in driving_template_dct.keys() else driving_template_dct['c_d_lip_lst']
driving_n_frames = driving_template_dct['n_frames']
flag_is_driving_video = True if driving_n_frames > 1 else False
n_frames = driving_n_frames
# set output_fps
output_fps = driving_template_dct.get('output_fps', 25)
print(f'The FPS of template: {output_fps}')
return driving_template_dct
def reconstruction(self, src_img, dst_imgs, video_path="template"):
# prepare source
src_img_256x256, s_lmk, _ = self.crop_image(src_img, do_crop=False)
#c_s_eyes_lst, c_s_lip_lst = self.calc_ratio([s_lmk])
c_s_eyes_lst = None
f_s, x_s_info = self.prepare_source(src_img_256x256)
# prepare driving videos
dst_imgs_256x256, d_lmk_lst = self.crop_driving_videos(dst_imgs, do_crop=False)
c_d_eyes_lst, c_d_lip_lst = self.calc_ratio(d_lmk_lst)
kp_infos = self.prepare_driving_videos(dst_imgs_256x256)
recs = self.driven(f_s, x_s_info, s_lmk, c_s_eyes_lst, kp_infos, c_d_eyes_lst, c_d_lip_lst)
return recs
def save_results(self, results, save_path, audio_path=None):
save_dir = osp.dirname(save_path)
save_name = osp.basename(save_path)
final_video = osp.join(save_dir, f'final_{save_name}')
images2video(results, wfp=save_path, fps=self.cfg.output_fps)
if audio_path is not None:
add_audio_to_video(save_path, audio_path, final_video)
os.remove(save_path)
def rec_score(self, video_path: str, interval=None, save_path=None):
video_frames = self.read_video(video_path, interval=interval)
#print(f"len frames: {len(video_frames)}, shape: {video_frames[0].shape}")
recs = self.reconstruction(video_frames[0], video_frames[1:], video_path)
if save_path is not None:
self.save_results(recs, save_path)
#print(f"len rec: {len(recs)}, shape: {recs[0].shape}")
psnrs = psnr(video_frames[1:], recs)
psnrs_np = np.array(psnrs)
psnr_mean, psnr_std = np.mean(psnrs_np), np.std(psnrs_np)
rec_score = {"mean": psnr_mean, "std": psnr_std}
return rec_score
@torch.no_grad()
def paste_back_by_face_mask(self, result, crop_info, src_img, crop_src_image, use_laplacian=False):
"""
paste back the result to the original image with face mask
"""
# detect src mask
crop_src_tensor = self.to_tensor(crop_src_image).unsqueeze(0).to(self.device)
src_msks = get_face_mask(self.face_parser, crop_src_tensor)
result_tensor = self.to_tensor(result).unsqueeze(0).to(self.device)
result_msks = get_face_mask(self.face_parser, result_tensor)
# combine masks
masks = []
for src_msk, result_msk in zip(src_msks, result_msks):
mask = np.clip(src_msk + result_msk, 0, 1)
masks.append(mask)
result = paste_back_with_face_mask(result, crop_info, src_img, masks[0], use_laplacian=use_laplacian)
return result
def driven_by_audio(self, src_img, kp_infos, save_path, audio_path=None, smooth=False):
# prepare source
# prepare source
src_img_256x256, s_lmk, crop_info = self.crop_image(src_img, do_crop=True)
#c_s_eyes_lst, c_s_lip_lst = self.calc_ratio([s_lmk])
c_s_eyes_lst = None
f_s, x_s_info = self.prepare_source(src_img_256x256)
mask_ori_float = prepare_paste_back(self.mask_crop, crop_info['M_c2o'], dsize=(src_img.shape[1], src_img.shape[0]))
# prepare driving videos
results = self.driven(f_s, x_s_info, s_lmk, c_s_eyes_lst, kp_infos, smooth=smooth)
frames=results.shape[0]
results = [paste_back(results[i], crop_info['M_c2o'], src_img, mask_ori_float) for i in range(frames)]
self.save_results(results, save_path, audio_path)
def mix_kp_infos(self, emo_kp_infos, lip_kp_infos, smooth=False, dtype="pt_tensor"):
driving_emo_template_dct = self.get_driving_template(emo_kp_infos, smooth=False, dtype=dtype)
if lip_kp_infos is not None:
driving_lip_template_dct = self.get_driving_template(lip_kp_infos, smooth=smooth, dtype=dtype)
driving_template_dct = {**driving_emo_template_dct}
n_frames = min(driving_emo_template_dct['n_frames'], driving_lip_template_dct['n_frames'])
driving_template_dct['n_frames'] = n_frames
for i in range(n_frames):
emo_motion = driving_emo_template_dct['motion'][i]['exp']
lib_motion = driving_lip_template_dct['motion'][i]['exp']
for lip_idx in [6, 12, 14, 17, 19, 20]:
emo_motion[:, lip_idx, :] = lib_motion[:, lip_idx, :]
driving_template_dct['motion'][i]['exp'] = emo_motion
else:
driving_template_dct = driving_emo_template_dct
return driving_template_dct
def driven_by_mix(self, src_img, driving_video_path, kp_infos, save_path, audio_path=None, smooth=False):
# prepare source
src_img_256x256, s_lmk, crop_info = self.crop_image(src_img, do_crop=True)
c_s_eyes_lst, c_s_lip_lst = self.calc_ratio([s_lmk])
f_s, x_s_info = self.prepare_source(src_img_256x256)
mask_ori_float = prepare_paste_back(self.mask_crop, crop_info['M_c2o'], dsize=(src_img.shape[1], src_img.shape[0]))
# prepare driving videos
driving_imgs = self.read_video(driving_video_path, interval=1)
dst_imgs_256x256, d_lmk_lst = self.crop_driving_videos(driving_imgs, do_crop=True)
c_d_eyes_lst, c_d_lip_lst = self.calc_ratio(d_lmk_lst)
emo_kp_infos = self.prepare_driving_videos(dst_imgs_256x256)
# mix kp_infos
driving_template_dct = self.mix_kp_infos(emo_kp_infos, kp_infos, smooth=smooth)
# driven
results = self.driven_debug(f_s, x_s_info, s_lmk, c_s_eyes_lst, driving_template_dct, c_d_eyes_lst=c_d_eyes_lst, c_d_lip_lst=c_d_lip_lst)
results = [paste_back(result, crop_info['M_c2o'], src_img, mask_ori_float) for result in results]
print(results.shape)
self.save_results(results, save_path, audio_path)
def drive_video_by_mix(self, video_path, driving_video_path, kp_infos, save_path, audio_path):
# prepare driving videos
driving_imgs = self.read_video(driving_video_path, interval=1)
dst_imgs_256x256, d_lmk_lst = self.crop_driving_videos(driving_imgs, do_crop=True)
emo_kp_infos = self.prepare_driving_videos(dst_imgs_256x256)
# mix kp_infos
#driving_template_dct = self.get_driving_template(emo_kp_infos, smooth=True, dtype="np")
driving_template_dct = self.mix_kp_infos(emo_kp_infos, kp_infos, smooth=True, dtype="np")
# driven
self.video_lip_retargeting(
video_path, None,
save_path, audio_path,
driving_template_dct=driving_template_dct, retargeting_ragion="exp"
)
def load_source_video(self, video_info, n_frames=-1):
reader = imageio.get_reader(video_info, "ffmpeg")
ret = []
for idx, frame_rgb in enumerate(reader):
if n_frames > 0 and idx >= n_frames:
break
ret.append(frame_rgb)
reader.close()
return ret
def video_lip_retargeting(self, video_path, kp_infos, save_path, audio_path, c_d_eyes_lst=None, c_d_lip_lst=None, smooth=False, driving_template_dct=None, retargeting_ragion="exp"):
# 0. process source motion template
source_rgb_lst = load_video(video_path)
source_rgb_lst = [resize_to_limit(img, self.cfg.source_max_dim, self.cfg.source_division) for img in source_rgb_lst]
img_crop_256x256_lst, source_lmk_crop_lst, source_M_c2o_lst = self.crop_source_video(source_rgb_lst, do_crop=True)
c_s_eyes_lst, c_s_lip_lst = self.calc_ratio(source_lmk_crop_lst)
I_s_lst = self.prepare_videos(img_crop_256x256_lst)
source_template_dct = self.make_motion_template(I_s_lst, c_s_eyes_lst, c_s_lip_lst, output_fps=25)
# 1. prepare driving template
if driving_template_dct is None:
driving_template_dct = self.get_driving_template(kp_infos, smooth=smooth, dtype="np")
# 2. driving
n_frames = min(source_template_dct['n_frames'], driving_template_dct['n_frames'])
# driving params
I_p_lst = []
I_p_pstbk_lst = []
R_d_0, x_d_0_info = None, None
flag_normalize_lip = self.cfg.flag_normalize_lip
flag_relative_motion = True #self.cfg.flag_relative_motion
flag_source_video_eye_retargeting = self.cfg.flag_source_video_eye_retargeting
lip_normalize_threshold = self.cfg.lip_normalize_threshold
source_video_eye_retargeting_threshold = self.cfg.source_video_eye_retargeting_threshold
animation_region = 'lip' #self.cfg.animation_region
driving_option = self.cfg.driving_option
flag_stitching = self.cfg.flag_stitching
flag_eye_retargeting = self.cfg.flag_eye_retargeting
flag_lip_retargeting = self.cfg.flag_lip_retargeting
driving_multiplier = self.cfg.driving_multiplier
driving_smooth_observation_variance = self.cfg.driving_smooth_observation_variance
key_r = 'R' if 'R' in driving_template_dct['motion'][0].keys() else 'R_d'
if flag_relative_motion:
x_d_exp_lst = [source_template_dct['motion'][i]['exp'] + driving_template_dct['motion'][i]['exp'] - driving_template_dct['motion'][0]['exp'] for i in range(n_frames)]
for i in range(n_frames):
for idx in [6, 12, 14, 17, 19, 20]:
# lip motion use abs motion
x_d_exp_lst[i][:, idx, :] = driving_template_dct['motion'][i]['exp'][:, idx, :]
x_d_exp_lst_smooth = ksmooth(x_d_exp_lst, source_template_dct['motion'][0]['exp'].shape, self.device, driving_smooth_observation_variance)
if animation_region == "all" or animation_region == "pose" or "all" in animation_region:
x_d_r_lst = [(np.dot(driving_template_dct['motion'][i][key_r], driving_template_dct['motion'][0][key_r].transpose(0, 2, 1))) @ source_template_dct['motion'][i]['R'] for i in range(n_frames)]
x_d_r_lst_smooth = ksmooth(x_d_r_lst, source_template_dct['motion'][0]['R'].shape, self.device, driving_smooth_observation_variance)
else:
x_d_exp_lst = [driving_template_dct['motion'][i]['exp'] for i in range(n_frames)]
x_d_exp_lst_smooth = ksmooth(x_d_exp_lst, source_template_dct['motion'][0]['exp'].shape, self.device, driving_smooth_observation_variance)
if animation_region == "all" or animation_region == "pose" or "all" in animation_region:
x_d_r_lst = [driving_template_dct['motion'][i][key_r] for i in range(n_frames)]
x_d_r_lst_smooth = ksmooth(x_d_r_lst, source_template_dct['motion'][0]['R'].shape, self.device, driving_smooth_observation_variance)
# driving all
for i in track(range(n_frames), description='🚀Retargeting...', total=n_frames):
x_s_info = source_template_dct['motion'][i]
x_s_info = dct2device(x_s_info, self.device)
source_lmk = source_lmk_crop_lst[i]
img_crop_256x256 = img_crop_256x256_lst[i]
I_s = I_s_lst[i]
f_s = self.extract_feature_3d(I_s)
x_c_s = x_s_info['kp']
R_s = x_s_info['R']
x_s =x_s_info['x_s']
# let lip-open scalar to be 0 at first if the input is a video
lip_delta_before_animation = None
if flag_normalize_lip and flag_relative_motion and source_lmk is not None:
c_d_lip_before_animation = [0.]
combined_lip_ratio_tensor_before_animation = self.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
if combined_lip_ratio_tensor_before_animation[0][0] >= lip_normalize_threshold:
lip_delta_before_animation = self.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
else:
lip_delta_before_animation = None
# let eye-open scalar to be the same as the first frame if the latter is eye-open state
eye_delta_before_animation = None
if flag_source_video_eye_retargeting and source_lmk is not None:
if i == 0:
combined_eye_ratio_tensor_frame_zero = c_s_eyes_lst[0]
c_d_eye_before_animation_frame_zero = [[combined_eye_ratio_tensor_frame_zero[0][:2].mean()]]
if c_d_eye_before_animation_frame_zero[0][0] < source_video_eye_retargeting_threshold:
c_d_eye_before_animation_frame_zero = [[0.39]]
combined_eye_ratio_tensor_before_animation = self.calc_combined_eye_ratio(c_d_eye_before_animation_frame_zero, source_lmk)
eye_delta_before_animation = self.retarget_eye(x_s, combined_eye_ratio_tensor_before_animation)
if flag_stitching: # prepare for paste back
mask_ori_float = prepare_paste_back(self.mask_crop, source_M_c2o_lst[i], dsize=(source_rgb_lst[i].shape[1], source_rgb_lst[i].shape[0]))
x_d_i_info = driving_template_dct['motion'][i]
x_d_i_info = dct2device(x_d_i_info, self.device)
R_d_i = x_d_i_info['R'] if 'R' in x_d_i_info.keys() else x_d_i_info['R_d'] # compatible with previous keys
if i == 0: # cache the first frame
R_d_0 = R_d_i
x_d_0_info = x_d_i_info.copy()
delta_new = x_s_info['exp'].clone()
if flag_relative_motion:
if animation_region == "all" or animation_region == "pose" or "all" in animation_region:
R_new = x_d_r_lst_smooth[i]
else:
R_new = R_s
if animation_region == "all" or animation_region == "exp":
for idx in [1,2,6,11,12,13,14,15,16,17,18,19,20]:
delta_new[:, idx, :] = x_d_exp_lst_smooth[i][idx, :]
delta_new[:, 3:5, 1] = x_d_exp_lst_smooth[i][3:5, 1]
delta_new[:, 5, 2] = x_d_exp_lst_smooth[i][5, 2]
delta_new[:, 8, 2] = x_d_exp_lst_smooth[i][8, 2]
delta_new[:, 9, 1:] = x_d_exp_lst_smooth[i][9, 1:]
elif animation_region == "all_wo_lip" or animation_region == "exp_wo_lip":
for idx in [1, 2, 11, 13, 15, 16, 18]:
delta_new[:, idx, :] = x_d_exp_lst_smooth[i][idx, :]
delta_new[:, 3:5, 1] = x_d_exp_lst_smooth[i][3:5, 1]
delta_new[:, 5, 2] = x_d_exp_lst_smooth[i][5, 2]
delta_new[:, 8, 2] = x_d_exp_lst_smooth[i][8, 2]
delta_new[:, 9, 1:] = x_d_exp_lst_smooth[i][9, 1:]
elif animation_region == "lip":
for lip_idx in [6, 12, 14, 17, 19, 20]:
delta_new[:, lip_idx, :] = x_d_exp_lst_smooth[i][lip_idx, :]
elif animation_region == "eyes":
for eyes_idx in [11, 13, 15, 16, 18]:
delta_new[:, eyes_idx, :] = x_d_exp_lst_smooth[i][eyes_idx, :]
scale_new = x_s_info['scale']
t_new = x_s_info['t']
else:
if animation_region == "all" or animation_region == "pose" or "all" in animation_region:
R_new = x_d_r_lst_smooth[i]
else:
R_new = R_s
if animation_region == "all" or animation_region == "exp":
for idx in [1,2,6,11,12,13,14,15,16,17,18,19,20]:
delta_new[:, idx, :] = x_d_exp_lst_smooth[i][idx, :]
delta_new[:, 3:5, 1] = x_d_exp_lst_smooth[i][3:5, 1]
delta_new[:, 5, 2] = x_d_exp_lst_smooth[i][5, 2]
delta_new[:, 8, 2] = x_d_exp_lst_smooth[i][8, 2]
delta_new[:, 9, 1:] = x_d_exp_lst_smooth[i][9, 1:]
elif animation_region == "all_wo_lip" or animation_region == "exp_wo_lip":
for idx in [1, 2, 11, 13, 15, 16, 18]:
delta_new[:, idx, :] = x_d_exp_lst_smooth[i][idx, :]
delta_new[:, 3:5, 1] = x_d_exp_lst_smooth[i][3:5, 1]
delta_new[:, 5, 2] = x_d_exp_lst_smooth[i][5, 2]
delta_new[:, 8, 2] = x_d_exp_lst_smooth[i][8, 2]
delta_new[:, 9, 1:] = x_d_exp_lst_smooth[i][9, 1:]
elif animation_region == "lip":
for lip_idx in [6, 12, 14, 17, 19, 20]:
delta_new[:, lip_idx, :] = x_d_exp_lst_smooth[i][lip_idx, :]
elif animation_region == "eyes":
for eyes_idx in [11, 13, 15, 16, 18]:
delta_new[:, eyes_idx, :] = x_d_exp_lst_smooth[i][eyes_idx, :]
scale_new = x_s_info['scale']
if animation_region == "all" or animation_region == "pose" or "all" in animation_region:
t_new = x_d_i_info['t']
else:
t_new = x_s_info['t']
t_new[..., 2].fill_(0) # zero tz
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
# Algorithm 1:
if not flag_stitching and not flag_eye_retargeting and not flag_lip_retargeting:
# without stitching or retargeting
if flag_normalize_lip and lip_delta_before_animation is not None:
x_d_i_new += lip_delta_before_animation
if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
else:
pass
elif flag_stitching and not flag_eye_retargeting and not flag_lip_retargeting:
# with stitching and without retargeting
if flag_normalize_lip and lip_delta_before_animation is not None:
x_d_i_new = self.stitching(x_s, x_d_i_new) + lip_delta_before_animation
else:
x_d_i_new = self.stitching(x_s, x_d_i_new)
if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
else:
eyes_delta, lip_delta = None, None
if flag_eye_retargeting and source_lmk is not None and c_d_eyes_lst is not None:
c_d_eyes_i = c_d_eyes_lst[i]
combined_eye_ratio_tensor = self.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
# ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
eyes_delta = self.retarget_eye(x_s, combined_eye_ratio_tensor)
if flag_lip_retargeting and source_lmk is not None and c_d_lip_lst is not None:
c_d_lip_i = c_d_lip_lst[i]
combined_lip_ratio_tensor = self.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
lip_delta = self.retarget_lip(x_s, combined_lip_ratio_tensor)
if flag_relative_motion: # use x_s
x_d_i_new = x_s + \
(eyes_delta if eyes_delta is not None else 0) + \
(lip_delta if lip_delta is not None else 0)
else: # use x_d,i
x_d_i_new = x_d_i_new + \
(eyes_delta if eyes_delta is not None else 0) + \
(lip_delta if lip_delta is not None else 0)
if flag_stitching:
x_d_i_new = self.stitching(x_s, x_d_i_new)
x_d_i_new = x_s + (x_d_i_new - x_s) * driving_multiplier
out = self.warp_decode(f_s, x_s, x_d_i_new)
I_p_i = self.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
if flag_stitching:
# TODO: the paste back procedure is slow, considering optimize it using multi-threading or GPU
#I_p_pstbk = self.paste_back_by_face_mask(I_p_i, source_M_c2o_lst[i], source_rgb_lst[i], img_crop_256x256, use_laplacian=True)
I_p_pstbk = paste_back(I_p_i, source_M_c2o_lst[i], source_rgb_lst[i], mask_ori_float, use_laplacian=True)
I_p_pstbk_lst.append(I_p_pstbk)
if len(I_p_pstbk_lst) > 0:
self.save_results(I_p_pstbk_lst, save_path, audio_path)
else:
self.save_results(I_p_lst, save_path, audio_path)
@torch.no_grad()
def video_reconstruction_test(self, video_tensor, xs, save_path):
# video_tensor, (1, F, C, H, W), [-1, 1]
# xs, (1, F, 63)
result_lst = []
#ori_videos = []
video_tensor = video_tensor[0:1] * 0.5 + 0.5 # [-1, 1] -> [0, 1], 1xTx3xHxW
video_tensor = torch.clip(video_tensor, 0, 1)
video_tensor = video_tensor.permute(1, 0, 2, 3, 4) # 1xTx3xHxW -> Tx1x3xHxW
video = video_tensor.to(self.device)
xs = xs[0:1].permute(1, 0, 2) # 1xTx63 -> Tx1x63
xs = xs.reshape(-1, 1, 21, 3)
xs = xs.to(self.device)
x_s_0 = xs[0]
I_s_0 = torch.nn.functional.interpolate(video[0], size=(256, 256), mode='bilinear')
f_s_0 = self.extract_feature_3d(I_s_0)
for i in range(video_tensor.shape[0]):
#I_s = video[i] # 1x3xHxW
#ori_videos.append((I_s.squeeze(0).squeeze(0).permute(1, 2, 0).cpu().numpy()*255).astype(np.uint8))
x_s = self.stitching(x_s_0, xs[i])
out = self.warp_decode(f_s_0, x_s_0, x_s)
I_p_i = self.parse_output(out['out'])[0]
result_lst.append(I_p_i)
#save_dir = osp.dirname(save_path)
#ori_path = osp.join(save_dir, "ori.mp4")
#save_path = osp.join(save_dir, "rec.mp4")
self.save_results(result_lst, save_path, audio_path=None)
#self.save_results(ori_videos, ori_path, audio_path=None)
@torch.no_grad()
def self_driven(self, image_tensor, xs, save_path, length):
result_lst = []
image_tensor = image_tensor[0:1] * 0.5 + 0.5 # [-1, 1] -> [0, 1], 1x3xHxW
image_tensor = torch.clip(image_tensor, 0, 1)
image = image_tensor.to(self.device)
I_s_0 = torch.nn.functional.interpolate(image, size=(256, 256), mode='bilinear')
xs = xs[0:1].permute(1, 0, 2) # 1xTx63 -> Tx1x63
xs = xs.reshape(-1, 1, 21, 3)
xs = xs.to(self.device)
x_s_0 = xs[0]
f_s_0 = self.extract_feature_3d(I_s_0)
for i in range(xs.shape[0]):
x_d = self.stitching(x_s_0, xs[i])
out = self.warp_decode(f_s_0, x_s_0, x_d)
I_p_i = self.parse_output(out['out'])[0]
result_lst.append(I_p_i)
assert len(result_lst) == length, f"length of result_lst is {len(result_lst)}, but length is {length}"
self.save_results(result_lst, save_path, audio_path=None)
|