File size: 13,009 Bytes
7758cff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# encoding = 'utf-8'
import os
import os.path as osp
import sys
from omegaconf import OmegaConf


import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)

import torch
torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning

sys.path.append(osp.dirname(osp.dirname(osp.dirname(osp.dirname(osp.realpath(__file__))))))

from src.datasets.preprocess.extract_features.audio_processer import AudioProcessor
from src.datasets.preprocess.extract_features.motion_processer import MotionProcesser
from src.models.dit.talking_head_diffusion import MotionDiffusion


from src.utils.rprint import rlog as log
import time

emo_map = {
    0: 'Anger', 
    1: 'Contempt', 
    2: 'Disgust', 
    3: 'Fear', 
    4: 'Happiness', 
    5: 'Neutral', 
    6: 'Sadness', 
    7: 'Surprise',
    8: 'None'
}
# import torch
import random
import numpy as np

def set_seed(seed: int = 42):
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)  # 如果使用多个 GPU
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False  # 关闭 CuDNN 优化以保证可复现性

# 在推理前调用
set_seed(42)

class NullableArgs:
    def __init__(self, namespace):
        for key, value in namespace.__dict__.items():
            setattr(self, key, value)


class LiveVASAPipeline(object):
    def __init__(self, cfg_path: str, load_motion_generator: bool = True, motion_mean_std_path=None):
        """The pipeline for LiveVASA
        The pipeline for LiveVASA

        Args:
            cfg_path (str): YAML config file path of LiveVASA
        """
        # pretrained encoders of live portrait
        cfg = OmegaConf.load(cfg_path)
        self.device_id = cfg.device_id
        self.device = f"cuda:{self.device_id}"
        
        # 1 load audio processor
        self.audio_processor: AudioProcessor = AudioProcessor(cfg_path=cfg.audio_model_config, is_training=False)
        log(f"Load audio_processor done.")

        if cfg.motion_models_config is not None and load_motion_generator:
            motion_models_config = OmegaConf.load(cfg.motion_models_config)
            log(f"Load motion_models_config from {osp.realpath(cfg.motion_models_config)} done.")
            self.motion_generator = MotionDiffusion(motion_models_config, device=self.device)
            self.load_motion_generator(self.motion_generator, cfg.motion_generator_path)
            # self.motion_generator.eval()
        else:
            self.motion_generator = None    
            log(f"Init motion_generator as None.")
        
        # 3. load motion processer
        self.motion_processer: MotionProcesser = MotionProcesser(cfg_path=cfg.motion_processer_config, device_id=cfg.device_id)
        log(f"Load motion_processor done.")


        self.motion_mean_std = None
        if motion_mean_std_path is not None:
            self.motion_mean_std = torch.load(motion_mean_std_path)
            self.motion_mean_std["mean"] = self.motion_mean_std["mean"].to(self.device)
            self.motion_mean_std["std"] = self.motion_mean_std["std"].to(self.device)
            print(f"scale mean: {self.motion_mean_std['mean'][0, 63:64]}, std: {self.motion_mean_std['std'][0, 63:64]}")
            print(f"t mean: {self.motion_mean_std['mean'][0, 64:67]}, std: {self.motion_mean_std['std'][0, 64:67]}")
            print(f"pitch mean: {self.motion_mean_std['mean'][0, 67:68]}, std: {self.motion_mean_std['std'][0, 67:68]}")
            print(f"yaw mean: {self.motion_mean_std['mean'][0, 68:69]}, std: {self.motion_mean_std['std'][0, 68:69]}")
            print(f"scoll mean: {self.motion_mean_std['mean'][0, 69:70]}, std: {self.motion_mean_std['std'][0, 69:70]}")

        self.cfg = cfg

    def set_motion_generator(self, motion_generator: MotionDiffusion):
        self.motion_generator = motion_generator
        self.motion_generator.to(self.device)
        
    def load_motion_generator(self, model, motion_generator_path: str):
        print(motion_generator_path)
        model_data = torch.load(motion_generator_path, map_location=self.device)
        model.load_state_dict(model_data, strict=False)
       

        model.to(self.device)
        model.eval()

    def modulate_lip(self, standard_motion: torch.Tensor, motions: torch.Tensor, alpha=5, beta=0.1):
        # standard_motion: 63
        # motions: Tx63
        standard_exp = standard_motion[:63].reshape(1, 21, 3)
        exps = motions[:, :63].reshape(-1, 21, 3)
        exp_deltas = exps - standard_exp

        # calc weights
        lip_deltas = []
        for lip_idx in [6, 12, 14, 17, 19, 20]:
            lip_deltas.append(exp_deltas[:, lip_idx, :])
        lip_deltas = torch.stack(lip_deltas, dim=1)   # T, 6, 3
        lip_deltas = lip_deltas.view(lip_deltas.shape[0], -1) 
        lip_dist = torch.sum(lip_deltas ** 2, dim=-1, keepdim=True)
        max_dist = torch.max(lip_dist, dim=0)[0].squeeze()   # 1
        weight = (torch.sigmoid(lip_dist*alpha) - 0.5) / (max_dist * beta + 0.05) 

        # modulation
        for lip_idx in [6, 12, 14, 17, 19, 20]:
            exps[:, lip_idx, :] = standard_exp[:, lip_idx, :] + exp_deltas[:, lip_idx, :] * (1 + weight)
        motions[:, :63] = exps.flatten(-2, -1)
        
        return motions
    
    def get_motion_sequence(self, motion_data: torch.Tensor, rescale_ratio=1.0):
        n_frames = motion_data.shape[0]
        # denorm
        if self.motion_mean_std is not None:
            if motion_data.shape[1] > 70:
                motion_data[:, :63] = motion_data[:, :63] * (self.motion_mean_std["std"][:, :63] + 1e-5) + self.motion_mean_std["mean"][:, :63]
                # denorm pose
                motion_data[:, 63:] = motion_data[:, 63:] + self.motion_mean_std["mean"][:, 63:]
            else:
                motion_data = motion_data * (self.motion_mean_std["std"] + 1e-5) + self.motion_mean_std["mean"]

        kp_infos = {"exp": [], "scale": [], "t": [], "pitch": [], "yaw": [], "roll": []}
        for idx in range(n_frames):
            exp = motion_data[idx][:63]
            scale = motion_data[idx][63:64] * rescale_ratio
            t = motion_data[idx][64:67] * rescale_ratio
            if motion_data.shape[1] > 70:
                pitch = motion_data[idx][67:133]
                yaw = motion_data[idx][133:199]
                roll = motion_data[idx][199:265]
            else:
                pitch = motion_data[idx][67:68]
                yaw = motion_data[idx][68:69]
                roll = motion_data[idx][69:70]

            kp_infos["exp"].append(exp)
            kp_infos["scale"].append(scale)
            kp_infos["t"].append(t)
            kp_infos["pitch"].append(pitch)
            kp_infos["yaw"].append(yaw)
            kp_infos["roll"].append(roll)

        for k, v in kp_infos.items():
            kp_infos[k] = torch.stack(v)

        return kp_infos
    
    def get_prev_motion(self, x_s_info):
        kp_infos = []
        x_s_info["t"][:, 2] = 0  # zero tz
        if self.motion_generator is not None and self.motion_generator.input_dim == 70:
            x_s_info = self.motion_processer.refine_kp(x_s_info)
            for k, v in x_s_info.items():
                x_s_info[k] = v.reshape(1, -1)

        rescale_ratio = 1.0 if self.motion_mean_std is None else (x_s_info["scale"] + 1e-5) / (self.motion_mean_std["mean"][:, 63:64] + 1e-5)

        for feat_name in ["exp", "scale", "t", "pitch", "yaw", "roll"]:
            if feat_name in ["scale", "t"]:
                # set scale as the mean scale
                kp_infos.append(x_s_info[feat_name] / rescale_ratio)
            else:
                kp_infos.append(x_s_info[feat_name])
        kp_infos = torch.cat(kp_infos, dim=-1)   # B, D
        
        # normalize
        if self.motion_mean_std is not None:
            # normalize exp
            if self.motion_generator is not None and self.motion_generator.input_dim > 70:
                kp_infos[:, :63] = (kp_infos[:, :63] - self.motion_mean_std["mean"][:, :63]) / (self.motion_mean_std["std"][:, :63] + 1e-5)
                # normalize pose
                kp_infos[:, 63:] = kp_infos[:, 63:] - self.motion_mean_std["mean"][:, 63:]
            else:
                kp_infos = (kp_infos - self.motion_mean_std["mean"]) / (self.motion_mean_std["std"] + 1e-5)

        kp_infos = kp_infos.unsqueeze(1)    # B, D
        return kp_infos, rescale_ratio

    def process_audio(self, audio_path: str, silent_audio_path = None, mode="post"):
        # add silent audio to pad short input
        ori_audio_path = audio_path
        audio_path, add_frames = self.audio_processor.add_silent_audio(audio_path, silent_audio_path, add_duration=2, linear_fusion=False, mode=mode)
        audio_emb = self.audio_processor.get_long_audio_emb(audio_path)
        return audio_emb, audio_path, add_frames, ori_audio_path

    def driven_sample(self, image_path: str, audio_path: str, cfg_scale: float=1., emo: int=8, save_dir=None, smooth=False, silent_audio_path = None, silent_mode="post"):
        assert self.motion_generator is not None, f"Motion Generator is not set"
        reference_name = osp.basename(image_path).split('.')[0]
        audio_name = osp.basename(audio_path).split('.')[0]
        # get audio embeddings
        audio_emb, audio_path, add_frames, ori_audio_path = self.process_audio(audio_path, silent_audio_path, mode=silent_mode)

        # get src image infos
        source_rgb_lst = self.motion_processer.read_image(image_path)
        src_img_256x256, s_lmk, crop_info = self.motion_processer.crop_image(source_rgb_lst[0], do_crop=True)
        f_s, x_s_info = self.motion_processer.prepare_source(src_img_256x256)
        prev_motion, rescale_ratio = self.get_prev_motion(x_s_info)
        # generate motions
        motion = self.motion_generator.sample(audio_emb, x_s_info["kp"], prev_motion=prev_motion, cfg_scale=cfg_scale, emo=emo)
        if add_frames > 0:
            standard_motion = motion[-max(add_frames*3//4, 1)]
            motion = self.modulate_lip(standard_motion, motion, alpha=5)
            if silent_mode == "both":
                motion = motion[add_frames:-add_frames]
            elif silent_mode == "pre":
                motion = motion[add_frames:]
            else:
                motion = motion[:-add_frames]

        print(f"length of motion: {len(motion)}")
        kp_infos = self.get_motion_sequence(motion, rescale_ratio=rescale_ratio)
        
        # driven results
        if save_dir is None:
            save_dir = self.cfg.output_dir
        if not osp.exists(save_dir):
            os.makedirs(save_dir)
        #save_path = osp.join(save_dir, f'{reference_name}_{audio_name}_cfg-{cfg_scale}_emo-{emo_map[emo]}.mp4')
        save_path = osp.join(save_dir, f'{reference_name}.mp4')

        self.motion_processer.driven_by_audio(source_rgb_lst[0], kp_infos, save_path, ori_audio_path, smooth=smooth)
        return save_path



    
    def viz_motion(self, motion_data):
        pass        
        
    def __call__(self):
        pass


if __name__ == "__main__":
    import time
    import random
    import argparse
    parser = argparse.ArgumentParser(description="Arguments for the task")
    parser.add_argument('--task', type=str, default="test", help='Task to perform')
    parser.add_argument('--cfg_path', type=str, default="configs/audio2motion/inference/inference.yaml", help='Path to configuration file')
    parser.add_argument('--image_path', type=str, default="src/examples/reference_images/6.jpg", help='Path to the input image')
    parser.add_argument('--audio_path', type=str, default="src/examples/driving_audios/5.wav", help='Path to the driving audio')
    parser.add_argument('--silent_audio_path', type=str, default="src/examples/silent-audio.wav", help='Path to silent audio file')
    parser.add_argument('--save_dir', type=str, default="output/", help='Directory to save results')
    parser.add_argument('--motion_mean_std_path', type=str, default="src/datasets/mean.pt", help='Path to motion mean and standard deviation file')
    parser.add_argument('--cfg_scale', type=float, default=1.2, help='Scaling factor for the configuration')
    args = parser.parse_args()
        
    pipeline = LiveVASAPipeline(cfg_path=args.cfg_path, motion_mean_std_path=args.motion_mean_std_path)
    emo=8
    if not osp.exists(args.save_dir):
        os.makedirs(args.save_dir)

    save_dir = osp.join(args.save_dir, f"cfg-{args.cfg_scale}-emo-{emo_map[emo]}")
    if not osp.exists(save_dir):
        os.makedirs(save_dir)  
  
    video_path = pipeline.driven_sample(
                    args.image_path, args.audio_path, 
                    cfg_scale=args.cfg_scale, emo=emo, 
                    save_dir=save_dir, smooth=False,
                    silent_audio_path = args.silent_audio_path,
                )
    print(f"Video Result has been saved into: {video_path}")