Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,009 Bytes
7758cff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# encoding = 'utf-8'
import os
import os.path as osp
import sys
from omegaconf import OmegaConf
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
import torch
torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning
sys.path.append(osp.dirname(osp.dirname(osp.dirname(osp.dirname(osp.realpath(__file__))))))
from src.datasets.preprocess.extract_features.audio_processer import AudioProcessor
from src.datasets.preprocess.extract_features.motion_processer import MotionProcesser
from src.models.dit.talking_head_diffusion import MotionDiffusion
from src.utils.rprint import rlog as log
import time
emo_map = {
0: 'Anger',
1: 'Contempt',
2: 'Disgust',
3: 'Fear',
4: 'Happiness',
5: 'Neutral',
6: 'Sadness',
7: 'Surprise',
8: 'None'
}
# import torch
import random
import numpy as np
def set_seed(seed: int = 42):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # 如果使用多个 GPU
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False # 关闭 CuDNN 优化以保证可复现性
# 在推理前调用
set_seed(42)
class NullableArgs:
def __init__(self, namespace):
for key, value in namespace.__dict__.items():
setattr(self, key, value)
class LiveVASAPipeline(object):
def __init__(self, cfg_path: str, load_motion_generator: bool = True, motion_mean_std_path=None):
"""The pipeline for LiveVASA
The pipeline for LiveVASA
Args:
cfg_path (str): YAML config file path of LiveVASA
"""
# pretrained encoders of live portrait
cfg = OmegaConf.load(cfg_path)
self.device_id = cfg.device_id
self.device = f"cuda:{self.device_id}"
# 1 load audio processor
self.audio_processor: AudioProcessor = AudioProcessor(cfg_path=cfg.audio_model_config, is_training=False)
log(f"Load audio_processor done.")
if cfg.motion_models_config is not None and load_motion_generator:
motion_models_config = OmegaConf.load(cfg.motion_models_config)
log(f"Load motion_models_config from {osp.realpath(cfg.motion_models_config)} done.")
self.motion_generator = MotionDiffusion(motion_models_config, device=self.device)
self.load_motion_generator(self.motion_generator, cfg.motion_generator_path)
# self.motion_generator.eval()
else:
self.motion_generator = None
log(f"Init motion_generator as None.")
# 3. load motion processer
self.motion_processer: MotionProcesser = MotionProcesser(cfg_path=cfg.motion_processer_config, device_id=cfg.device_id)
log(f"Load motion_processor done.")
self.motion_mean_std = None
if motion_mean_std_path is not None:
self.motion_mean_std = torch.load(motion_mean_std_path)
self.motion_mean_std["mean"] = self.motion_mean_std["mean"].to(self.device)
self.motion_mean_std["std"] = self.motion_mean_std["std"].to(self.device)
print(f"scale mean: {self.motion_mean_std['mean'][0, 63:64]}, std: {self.motion_mean_std['std'][0, 63:64]}")
print(f"t mean: {self.motion_mean_std['mean'][0, 64:67]}, std: {self.motion_mean_std['std'][0, 64:67]}")
print(f"pitch mean: {self.motion_mean_std['mean'][0, 67:68]}, std: {self.motion_mean_std['std'][0, 67:68]}")
print(f"yaw mean: {self.motion_mean_std['mean'][0, 68:69]}, std: {self.motion_mean_std['std'][0, 68:69]}")
print(f"scoll mean: {self.motion_mean_std['mean'][0, 69:70]}, std: {self.motion_mean_std['std'][0, 69:70]}")
self.cfg = cfg
def set_motion_generator(self, motion_generator: MotionDiffusion):
self.motion_generator = motion_generator
self.motion_generator.to(self.device)
def load_motion_generator(self, model, motion_generator_path: str):
print(motion_generator_path)
model_data = torch.load(motion_generator_path, map_location=self.device)
model.load_state_dict(model_data, strict=False)
model.to(self.device)
model.eval()
def modulate_lip(self, standard_motion: torch.Tensor, motions: torch.Tensor, alpha=5, beta=0.1):
# standard_motion: 63
# motions: Tx63
standard_exp = standard_motion[:63].reshape(1, 21, 3)
exps = motions[:, :63].reshape(-1, 21, 3)
exp_deltas = exps - standard_exp
# calc weights
lip_deltas = []
for lip_idx in [6, 12, 14, 17, 19, 20]:
lip_deltas.append(exp_deltas[:, lip_idx, :])
lip_deltas = torch.stack(lip_deltas, dim=1) # T, 6, 3
lip_deltas = lip_deltas.view(lip_deltas.shape[0], -1)
lip_dist = torch.sum(lip_deltas ** 2, dim=-1, keepdim=True)
max_dist = torch.max(lip_dist, dim=0)[0].squeeze() # 1
weight = (torch.sigmoid(lip_dist*alpha) - 0.5) / (max_dist * beta + 0.05)
# modulation
for lip_idx in [6, 12, 14, 17, 19, 20]:
exps[:, lip_idx, :] = standard_exp[:, lip_idx, :] + exp_deltas[:, lip_idx, :] * (1 + weight)
motions[:, :63] = exps.flatten(-2, -1)
return motions
def get_motion_sequence(self, motion_data: torch.Tensor, rescale_ratio=1.0):
n_frames = motion_data.shape[0]
# denorm
if self.motion_mean_std is not None:
if motion_data.shape[1] > 70:
motion_data[:, :63] = motion_data[:, :63] * (self.motion_mean_std["std"][:, :63] + 1e-5) + self.motion_mean_std["mean"][:, :63]
# denorm pose
motion_data[:, 63:] = motion_data[:, 63:] + self.motion_mean_std["mean"][:, 63:]
else:
motion_data = motion_data * (self.motion_mean_std["std"] + 1e-5) + self.motion_mean_std["mean"]
kp_infos = {"exp": [], "scale": [], "t": [], "pitch": [], "yaw": [], "roll": []}
for idx in range(n_frames):
exp = motion_data[idx][:63]
scale = motion_data[idx][63:64] * rescale_ratio
t = motion_data[idx][64:67] * rescale_ratio
if motion_data.shape[1] > 70:
pitch = motion_data[idx][67:133]
yaw = motion_data[idx][133:199]
roll = motion_data[idx][199:265]
else:
pitch = motion_data[idx][67:68]
yaw = motion_data[idx][68:69]
roll = motion_data[idx][69:70]
kp_infos["exp"].append(exp)
kp_infos["scale"].append(scale)
kp_infos["t"].append(t)
kp_infos["pitch"].append(pitch)
kp_infos["yaw"].append(yaw)
kp_infos["roll"].append(roll)
for k, v in kp_infos.items():
kp_infos[k] = torch.stack(v)
return kp_infos
def get_prev_motion(self, x_s_info):
kp_infos = []
x_s_info["t"][:, 2] = 0 # zero tz
if self.motion_generator is not None and self.motion_generator.input_dim == 70:
x_s_info = self.motion_processer.refine_kp(x_s_info)
for k, v in x_s_info.items():
x_s_info[k] = v.reshape(1, -1)
rescale_ratio = 1.0 if self.motion_mean_std is None else (x_s_info["scale"] + 1e-5) / (self.motion_mean_std["mean"][:, 63:64] + 1e-5)
for feat_name in ["exp", "scale", "t", "pitch", "yaw", "roll"]:
if feat_name in ["scale", "t"]:
# set scale as the mean scale
kp_infos.append(x_s_info[feat_name] / rescale_ratio)
else:
kp_infos.append(x_s_info[feat_name])
kp_infos = torch.cat(kp_infos, dim=-1) # B, D
# normalize
if self.motion_mean_std is not None:
# normalize exp
if self.motion_generator is not None and self.motion_generator.input_dim > 70:
kp_infos[:, :63] = (kp_infos[:, :63] - self.motion_mean_std["mean"][:, :63]) / (self.motion_mean_std["std"][:, :63] + 1e-5)
# normalize pose
kp_infos[:, 63:] = kp_infos[:, 63:] - self.motion_mean_std["mean"][:, 63:]
else:
kp_infos = (kp_infos - self.motion_mean_std["mean"]) / (self.motion_mean_std["std"] + 1e-5)
kp_infos = kp_infos.unsqueeze(1) # B, D
return kp_infos, rescale_ratio
def process_audio(self, audio_path: str, silent_audio_path = None, mode="post"):
# add silent audio to pad short input
ori_audio_path = audio_path
audio_path, add_frames = self.audio_processor.add_silent_audio(audio_path, silent_audio_path, add_duration=2, linear_fusion=False, mode=mode)
audio_emb = self.audio_processor.get_long_audio_emb(audio_path)
return audio_emb, audio_path, add_frames, ori_audio_path
def driven_sample(self, image_path: str, audio_path: str, cfg_scale: float=1., emo: int=8, save_dir=None, smooth=False, silent_audio_path = None, silent_mode="post"):
assert self.motion_generator is not None, f"Motion Generator is not set"
reference_name = osp.basename(image_path).split('.')[0]
audio_name = osp.basename(audio_path).split('.')[0]
# get audio embeddings
audio_emb, audio_path, add_frames, ori_audio_path = self.process_audio(audio_path, silent_audio_path, mode=silent_mode)
# get src image infos
source_rgb_lst = self.motion_processer.read_image(image_path)
src_img_256x256, s_lmk, crop_info = self.motion_processer.crop_image(source_rgb_lst[0], do_crop=True)
f_s, x_s_info = self.motion_processer.prepare_source(src_img_256x256)
prev_motion, rescale_ratio = self.get_prev_motion(x_s_info)
# generate motions
motion = self.motion_generator.sample(audio_emb, x_s_info["kp"], prev_motion=prev_motion, cfg_scale=cfg_scale, emo=emo)
if add_frames > 0:
standard_motion = motion[-max(add_frames*3//4, 1)]
motion = self.modulate_lip(standard_motion, motion, alpha=5)
if silent_mode == "both":
motion = motion[add_frames:-add_frames]
elif silent_mode == "pre":
motion = motion[add_frames:]
else:
motion = motion[:-add_frames]
print(f"length of motion: {len(motion)}")
kp_infos = self.get_motion_sequence(motion, rescale_ratio=rescale_ratio)
# driven results
if save_dir is None:
save_dir = self.cfg.output_dir
if not osp.exists(save_dir):
os.makedirs(save_dir)
#save_path = osp.join(save_dir, f'{reference_name}_{audio_name}_cfg-{cfg_scale}_emo-{emo_map[emo]}.mp4')
save_path = osp.join(save_dir, f'{reference_name}.mp4')
self.motion_processer.driven_by_audio(source_rgb_lst[0], kp_infos, save_path, ori_audio_path, smooth=smooth)
return save_path
def viz_motion(self, motion_data):
pass
def __call__(self):
pass
if __name__ == "__main__":
import time
import random
import argparse
parser = argparse.ArgumentParser(description="Arguments for the task")
parser.add_argument('--task', type=str, default="test", help='Task to perform')
parser.add_argument('--cfg_path', type=str, default="configs/audio2motion/inference/inference.yaml", help='Path to configuration file')
parser.add_argument('--image_path', type=str, default="src/examples/reference_images/6.jpg", help='Path to the input image')
parser.add_argument('--audio_path', type=str, default="src/examples/driving_audios/5.wav", help='Path to the driving audio')
parser.add_argument('--silent_audio_path', type=str, default="src/examples/silent-audio.wav", help='Path to silent audio file')
parser.add_argument('--save_dir', type=str, default="output/", help='Directory to save results')
parser.add_argument('--motion_mean_std_path', type=str, default="src/datasets/mean.pt", help='Path to motion mean and standard deviation file')
parser.add_argument('--cfg_scale', type=float, default=1.2, help='Scaling factor for the configuration')
args = parser.parse_args()
pipeline = LiveVASAPipeline(cfg_path=args.cfg_path, motion_mean_std_path=args.motion_mean_std_path)
emo=8
if not osp.exists(args.save_dir):
os.makedirs(args.save_dir)
save_dir = osp.join(args.save_dir, f"cfg-{args.cfg_scale}-emo-{emo_map[emo]}")
if not osp.exists(save_dir):
os.makedirs(save_dir)
video_path = pipeline.driven_sample(
args.image_path, args.audio_path,
cfg_scale=args.cfg_scale, emo=emo,
save_dir=save_dir, smooth=False,
silent_audio_path = args.silent_audio_path,
)
print(f"Video Result has been saved into: {video_path}")
|