multimodalart's picture
Update app.py
f1a281a verified
# app.py
import os
import sys
import time
import gradio as gr
import spaces
from huggingface_hub import snapshot_download
from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError, RevisionNotFoundError
from pathlib import Path
import tempfile
from pydub import AudioSegment
# Add the src directory to the system path to allow for local imports
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))
from models.inference.moda_test import LiveVASAPipeline, emo_map, set_seed
# --- Configuration ---
# Set seed for reproducibility
set_seed(42)
# Paths and constants for the Gradio demo
DEFAULT_CFG_PATH = "configs/audio2motion/inference/inference.yaml"
DEFAULT_MOTION_MEAN_STD_PATH = "src/datasets/mean.pt"
DEFAULT_SILENT_AUDIO_PATH = "src/examples/silent-audio.wav"
OUTPUT_DIR = "gradio_output"
WEIGHTS_DIR = "pretrain_weights"
REPO_ID = "lixinyizju/moda"
# --- Download Pre-trained Weights from Hugging Face Hub ---
def download_weights():
"""
Downloads pre-trained weights from Hugging Face Hub if they don't exist locally.
"""
# A simple check for a key file to see if the download is likely complete
motion_model_file = os.path.join(WEIGHTS_DIR, "moda", "net-200.pth")
if not os.path.exists(motion_model_file):
print(f"Weights not found locally. Downloading from Hugging Face Hub repo '{REPO_ID}'...")
print(f"This may take a while depending on your internet connection.")
try:
snapshot_download(
repo_id=REPO_ID,
local_dir=WEIGHTS_DIR,
local_dir_use_symlinks=False, # Use False to copy files directly; safer for Windows
resume_download=True,
)
print("Weights downloaded successfully.")
except GatedRepoError:
raise gr.Error(f"Access to the repository '{REPO_ID}' is gated. Please visit https://huggingface.co/{REPO_ID} to request access.")
except (RepositoryNotFoundError, RevisionNotFoundError):
raise gr.Error(f"The repository '{REPO_ID}' was not found. Please check the repository ID.")
except Exception as e:
print(f"An error occurred during download: {e}")
raise gr.Error(f"Failed to download models. Please check your internet connection and try again. Error: {e}")
else:
print(f"Found existing weights at '{WEIGHTS_DIR}'. Skipping download.")
# --- Audio Conversion Function ---
def ensure_wav_format(audio_path):
"""
Ensures the audio file is in WAV format. If not, converts it to WAV.
Returns the path to the WAV file (either original or converted).
"""
if audio_path is None:
return None
audio_path = Path(audio_path)
# Check if already WAV
if audio_path.suffix.lower() == '.wav':
print(f"Audio is already in WAV format: {audio_path}")
return str(audio_path)
# Convert to WAV
print(f"Converting audio from {audio_path.suffix} to WAV format...")
try:
# Load the audio file
audio = AudioSegment.from_file(audio_path)
# Create a temporary WAV file
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
wav_path = tmp_file.name
# Export as WAV with standard settings
audio.export(
wav_path,
format='wav',
parameters=["-ar", "16000", "-ac", "1"] # 16kHz, mono - adjust if your model needs different settings
)
print(f"Audio converted successfully to: {wav_path}")
return wav_path
except Exception as e:
print(f"Error converting audio: {e}")
raise gr.Error(f"Failed to convert audio file to WAV format. Error: {e}")
# --- Initialization ---
# Create output directory if it doesn't exist
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Download weights before initializing the pipeline
download_weights()
# Instantiate the pipeline once to avoid reloading models on every request
print("Initializing MoDA pipeline...")
try:
pipeline = LiveVASAPipeline(
cfg_path=DEFAULT_CFG_PATH,
motion_mean_std_path=DEFAULT_MOTION_MEAN_STD_PATH
)
print("MoDA pipeline initialized successfully.")
except Exception as e:
print(f"Error initializing pipeline: {e}")
pipeline = None
# Invert the emo_map for easy lookup from the dropdown value
emo_name_to_id = {v: k for k, v in emo_map.items()}
# --- Core Generation Function ---
@spaces.GPU(duration=120)
def generate_motion(source_image_path, driving_audio_path, emotion_name, cfg_scale, progress=gr.Progress(track_tqdm=True)):
"""
The main function that takes Gradio inputs and generates the talking head video.
"""
if pipeline is None:
raise gr.Error("Pipeline failed to initialize. Check the console logs for details.")
if source_image_path is None:
raise gr.Error("Please upload a source image.")
if driving_audio_path is None:
raise gr.Error("Please upload a driving audio file.")
start_time = time.time()
# Ensure audio is in WAV format
wav_audio_path = ensure_wav_format(driving_audio_path)
temp_wav_created = wav_audio_path != driving_audio_path
# Create a unique subdirectory for this run
timestamp = time.strftime("%Y%m%d-%H%M%S")
run_output_dir = os.path.join(OUTPUT_DIR, timestamp)
os.makedirs(run_output_dir, exist_ok=True)
# Get emotion ID from its name
emotion_id = emo_name_to_id.get(emotion_name, 8) # Default to 'None' (ID 8) if not found
print(f"Starting generation with the following parameters:")
print(f" Source Image: {source_image_path}")
print(f" Driving Audio (original): {driving_audio_path}")
print(f" Driving Audio (WAV): {wav_audio_path}")
print(f" Emotion: {emotion_name} (ID: {emotion_id})")
print(f" CFG Scale: {cfg_scale}")
try:
# Call the pipeline's inference method with the WAV audio
result_video_path = pipeline.driven_sample(
image_path=source_image_path,
audio_path=wav_audio_path,
cfg_scale=float(cfg_scale),
emo=emotion_id,
save_dir=".",
smooth=False, # Smoothing can be slow, disable for a faster demo
silent_audio_path=DEFAULT_SILENT_AUDIO_PATH,
)
except Exception as e:
print(f"An error occurred during video generation: {e}")
import traceback
traceback.print_exc()
raise gr.Error(f"An unexpected error occurred: {str(e)}. Please check the console for details.")
finally:
# Clean up temporary WAV file if created
if temp_wav_created and os.path.exists(wav_audio_path):
try:
os.remove(wav_audio_path)
print(f"Cleaned up temporary WAV file: {wav_audio_path}")
except Exception as e:
print(f"Warning: Could not delete temporary file {wav_audio_path}: {e}")
end_time = time.time()
processing_time = end_time - start_time
result_video_path = Path(result_video_path)
final_path = result_video_path.with_name(f"final_{result_video_path.stem}{result_video_path.suffix}")
print(f"Video generated successfully at: {final_path}")
print(f"Processing time: {processing_time:.2f} seconds.")
return final_path
# --- Gradio UI Definition ---
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 960px !important; margin: 0 auto !important}") as demo:
gr.HTML(
"""
<div align='center'>
<h1>MoDA: Multi-modal Diffusion Architecture for Talking Head Generation</h1>
<p style="display:flex">
<a href='https://lixinyyang.github.io/MoDA.github.io/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href='https://arxiv.org/abs/2507.03256'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
<a href='https://github.com/lixinyyang/MoDA/'><img src='https://img.shields.io/badge/Code-Github-green'></a>
</p>
</div>
"""
)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
with gr.Row():
source_image = gr.Image(label="Source Image", type="filepath", value="src/examples/reference_images/7.jpg")
with gr.Row():
driving_audio = gr.Audio(
label="Driving Audio",
type="filepath",
value="src/examples/driving_audios/5.wav"
)
with gr.Row():
emotion_dropdown = gr.Dropdown(
label="Emotion",
choices=list(emo_map.values()),
value="None"
)
with gr.Row():
cfg_slider = gr.Slider(
label="CFG Scale",
minimum=1.0,
maximum=3.0,
step=0.05,
value=1.2
)
submit_button = gr.Button("Generate Video", variant="primary")
with gr.Column(scale=1):
output_video = gr.Video(label="Generated Video")
gr.Markdown(
"""
---
### **Disclaimer**
This project is intended for academic research, and we explicitly disclaim any responsibility for user-generated content. Users are solely liable for their actions while using this generative model.
"""
)
submit_button.click(
fn=generate_motion,
inputs=[source_image, driving_audio, emotion_dropdown, cfg_slider],
outputs=output_video
)
if __name__ == "__main__":
demo.launch(share=True)