multimodalart HF Staff commited on
Commit
220c7ea
·
verified ·
1 Parent(s): 55f9dd0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -4
app.py CHANGED
@@ -8,6 +8,8 @@ import spaces
8
  from huggingface_hub import snapshot_download
9
  from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError, RevisionNotFoundError
10
  from pathlib import Path
 
 
11
 
12
  # Add the src directory to the system path to allow for local imports
13
  sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))
@@ -55,6 +57,45 @@ def download_weights():
55
  else:
56
  print(f"Found existing weights at '{WEIGHTS_DIR}'. Skipping download.")
57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
  # --- Initialization ---
60
  # Create output directory if it doesn't exist
@@ -94,6 +135,10 @@ def generate_motion(source_image_path, driving_audio_path, emotion_name, cfg_sca
94
 
95
  start_time = time.time()
96
 
 
 
 
 
97
  # Create a unique subdirectory for this run
98
  timestamp = time.strftime("%Y%m%d-%H%M%S")
99
  run_output_dir = os.path.join(OUTPUT_DIR, timestamp)
@@ -104,15 +149,16 @@ def generate_motion(source_image_path, driving_audio_path, emotion_name, cfg_sca
104
 
105
  print(f"Starting generation with the following parameters:")
106
  print(f" Source Image: {source_image_path}")
107
- print(f" Driving Audio: {driving_audio_path}")
 
108
  print(f" Emotion: {emotion_name} (ID: {emotion_id})")
109
  print(f" CFG Scale: {cfg_scale}")
110
 
111
  try:
112
- # Call the pipeline's inference method
113
  result_video_path = pipeline.driven_sample(
114
  image_path=source_image_path,
115
- audio_path=driving_audio_path,
116
  cfg_scale=float(cfg_scale),
117
  emo=emotion_id,
118
  save_dir=".",
@@ -124,6 +170,14 @@ def generate_motion(source_image_path, driving_audio_path, emotion_name, cfg_sca
124
  import traceback
125
  traceback.print_exc()
126
  raise gr.Error(f"An unexpected error occurred: {str(e)}. Please check the console for details.")
 
 
 
 
 
 
 
 
127
 
128
  end_time = time.time()
129
 
@@ -150,6 +204,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 90% !i
150
  </p>
151
  <p>
152
  This demo allows you to generate a talking head video from a source image and a driving audio file.
 
153
  </p>
154
  </div>
155
  """
@@ -161,7 +216,11 @@ with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 90% !i
161
  source_image = gr.Image(label="Source Image", type="filepath", value="src/examples/reference_images/6.jpg")
162
 
163
  with gr.Row():
164
- driving_audio = gr.Audio(label="Driving Audio", type="filepath", value="src/examples/driving_audios/5.wav")
 
 
 
 
165
 
166
  with gr.Row():
167
  emotion_dropdown = gr.Dropdown(
 
8
  from huggingface_hub import snapshot_download
9
  from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError, RevisionNotFoundError
10
  from pathlib import Path
11
+ import tempfile
12
+ from pydub import AudioSegment
13
 
14
  # Add the src directory to the system path to allow for local imports
15
  sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), 'src')))
 
57
  else:
58
  print(f"Found existing weights at '{WEIGHTS_DIR}'. Skipping download.")
59
 
60
+ # --- Audio Conversion Function ---
61
+ def ensure_wav_format(audio_path):
62
+ """
63
+ Ensures the audio file is in WAV format. If not, converts it to WAV.
64
+ Returns the path to the WAV file (either original or converted).
65
+ """
66
+ if audio_path is None:
67
+ return None
68
+
69
+ audio_path = Path(audio_path)
70
+
71
+ # Check if already WAV
72
+ if audio_path.suffix.lower() == '.wav':
73
+ print(f"Audio is already in WAV format: {audio_path}")
74
+ return str(audio_path)
75
+
76
+ # Convert to WAV
77
+ print(f"Converting audio from {audio_path.suffix} to WAV format...")
78
+
79
+ try:
80
+ # Load the audio file
81
+ audio = AudioSegment.from_file(audio_path)
82
+
83
+ # Create a temporary WAV file
84
+ with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
85
+ wav_path = tmp_file.name
86
+ # Export as WAV with standard settings
87
+ audio.export(
88
+ wav_path,
89
+ format='wav',
90
+ parameters=["-ar", "16000", "-ac", "1"] # 16kHz, mono - adjust if your model needs different settings
91
+ )
92
+
93
+ print(f"Audio converted successfully to: {wav_path}")
94
+ return wav_path
95
+
96
+ except Exception as e:
97
+ print(f"Error converting audio: {e}")
98
+ raise gr.Error(f"Failed to convert audio file to WAV format. Error: {e}")
99
 
100
  # --- Initialization ---
101
  # Create output directory if it doesn't exist
 
135
 
136
  start_time = time.time()
137
 
138
+ # Ensure audio is in WAV format
139
+ wav_audio_path = ensure_wav_format(driving_audio_path)
140
+ temp_wav_created = wav_audio_path != driving_audio_path
141
+
142
  # Create a unique subdirectory for this run
143
  timestamp = time.strftime("%Y%m%d-%H%M%S")
144
  run_output_dir = os.path.join(OUTPUT_DIR, timestamp)
 
149
 
150
  print(f"Starting generation with the following parameters:")
151
  print(f" Source Image: {source_image_path}")
152
+ print(f" Driving Audio (original): {driving_audio_path}")
153
+ print(f" Driving Audio (WAV): {wav_audio_path}")
154
  print(f" Emotion: {emotion_name} (ID: {emotion_id})")
155
  print(f" CFG Scale: {cfg_scale}")
156
 
157
  try:
158
+ # Call the pipeline's inference method with the WAV audio
159
  result_video_path = pipeline.driven_sample(
160
  image_path=source_image_path,
161
+ audio_path=wav_audio_path,
162
  cfg_scale=float(cfg_scale),
163
  emo=emotion_id,
164
  save_dir=".",
 
170
  import traceback
171
  traceback.print_exc()
172
  raise gr.Error(f"An unexpected error occurred: {str(e)}. Please check the console for details.")
173
+ finally:
174
+ # Clean up temporary WAV file if created
175
+ if temp_wav_created and os.path.exists(wav_audio_path):
176
+ try:
177
+ os.remove(wav_audio_path)
178
+ print(f"Cleaned up temporary WAV file: {wav_audio_path}")
179
+ except Exception as e:
180
+ print(f"Warning: Could not delete temporary file {wav_audio_path}: {e}")
181
 
182
  end_time = time.time()
183
 
 
204
  </p>
205
  <p>
206
  This demo allows you to generate a talking head video from a source image and a driving audio file.
207
+ Audio files in any common format (MP3, WAV, M4A, etc.) are supported and will be automatically converted if needed.
208
  </p>
209
  </div>
210
  """
 
216
  source_image = gr.Image(label="Source Image", type="filepath", value="src/examples/reference_images/6.jpg")
217
 
218
  with gr.Row():
219
+ driving_audio = gr.Audio(
220
+ label="Driving Audio (any format - will be converted to WAV if needed)",
221
+ type="filepath",
222
+ value="src/examples/driving_audios/5.wav"
223
+ )
224
 
225
  with gr.Row():
226
  emotion_dropdown = gr.Dropdown(