multimodalart HF Staff commited on
Commit
6e50c0f
·
verified ·
1 Parent(s): e3fdfea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +633 -319
app.py CHANGED
@@ -1,213 +1,363 @@
1
  import requests
2
  import os
3
  import gradio as gr
4
- from huggingface_hub import update_repo_visibility, whoami, upload_folder, create_repo, upload_file, update_repo_visibility
5
  from slugify import slugify
6
- import gradio as gr
7
  import re
8
  import uuid
9
- from typing import Optional
10
  import json
11
- from bs4 import BeautifulSoup
 
 
 
 
 
 
12
 
13
- TRUSTED_UPLOADERS = ["KappaNeuro", "CiroN2022", "multimodalart", "Norod78", "joachimsallstrom", "blink7630", "e-n-v-y", "DoctorDiffusion", "RalFinger", "artificialguybr"]
14
 
15
- def get_json_data(url):
16
  url_split = url.split('/')
17
- api_url = f"https://civitai.com/api/v1/models/{url_split[4]}"
 
 
 
 
 
 
 
 
 
 
18
  try:
19
- response = requests.get(api_url)
20
  response.raise_for_status()
21
  return response.json()
22
  except requests.exceptions.RequestException as e:
23
- print(f"Error fetching JSON data: {e}")
24
  return None
25
 
26
- def check_nsfw(json_data, profile):
27
- if json_data["nsfw"]:
 
28
  return False
29
- print(profile)
30
- if(profile.username in TRUSTED_UPLOADERS):
 
31
  return True
32
- for model_version in json_data["modelVersions"]:
33
- for image in model_version["images"]:
34
- if image["nsfwLevel"] > 5:
 
 
35
  return False
36
  return True
37
 
38
- def get_prompts_from_image(image_id):
39
- print("image_id: ", image_id)
40
  url = f'https://civitai.com/api/trpc/image.getGenerationData?input={{"json":{{"id":{image_id}}}}}'
41
- print(url)
42
- response = requests.get(url)
43
- print(response)
44
  prompt = ""
45
  negative_prompt = ""
46
- if response.status_code == 200:
47
- data = response.json()
48
- result = data['result']['data']['json']
49
- if result['meta'] is not None and "prompt" in result['meta']:
50
- prompt = result['meta']['prompt']
51
- if result['meta'] is not None and "negativePrompt" in result['meta']:
52
- negative_prompt = result["meta"]["negativePrompt"]
53
-
 
 
 
 
54
  return prompt, negative_prompt
55
 
56
- def extract_info(json_data):
57
- if json_data["type"] == "LORA":
58
- for model_version in json_data["modelVersions"]:
59
- if model_version["baseModel"] in ["SDXL 1.0", "SDXL 0.9", "SD 1.5", "SD 1.4", "SD 2.1", "SD 2.0", "SD 2.0 768", "SD 2.1 768", "SD 3", "Flux.1 D", "Flux.1 S"]:
60
- for file in model_version["files"]:
61
- print(file)
62
- if "primary" in file:
63
- # Start by adding the primary file to the list
64
- urls_to_download = [{"url": file["downloadUrl"], "filename": file["name"], "type": "weightName"}]
65
-
66
- # Then append all image URLs to the list
67
- for image in model_version["images"]:
68
- image_id = image["url"].split("/")[-1].split(".")[0]
69
- prompt, negative_prompt = get_prompts_from_image(image_id)
70
- if image["nsfwLevel"] > 5:
71
- pass #ugly before checking the actual logic
72
- else:
73
- urls_to_download.append({
74
- "url": image["url"],
75
- "filename": os.path.basename(image["url"]),
76
- "type": "imageName",
77
- "prompt": prompt, #if "meta" in image and "prompt" in image["meta"] else ""
78
- "negative_prompt": negative_prompt
79
- })
80
- model_mapping = {
81
- "SDXL 1.0": "stabilityai/stable-diffusion-xl-base-1.0",
82
- "SDXL 0.9": "stabilityai/stable-diffusion-xl-base-1.0",
83
- "SD 1.5": "runwayml/stable-diffusion-v1-5",
84
- "SD 1.4": "CompVis/stable-diffusion-v1-4",
85
- "SD 2.1": "stabilityai/stable-diffusion-2-1-base",
86
- "SD 2.0": "stabilityai/stable-diffusion-2-base",
87
- "SD 2.1 768": "stabilityai/stable-diffusion-2-1",
88
- "SD 2.0 768": "stabilityai/stable-diffusion-2",
89
- "SD 3": "stabilityai/stable-diffusion-3-medium-diffusers",
90
- "Flux.1 D": "black-forest-labs/FLUX.1-dev",
91
- "Flux.1 S": "black-forest-labs/FLUX.1-schnell"
92
- }
93
- base_model = model_mapping[model_version["baseModel"]]
94
- info = {
95
- "urls_to_download": urls_to_download,
96
- "id": model_version["id"],
97
- "baseModel": base_model,
98
- "modelId": model_version.get("modelId", ""),
99
- "name": json_data["name"],
100
- "description": json_data["description"],
101
- "trainedWords": model_version["trainedWords"] if "trainedWords" in model_version else [],
102
- "creator": json_data["creator"]["username"],
103
- "tags": json_data["tags"],
104
- "allowNoCredit": json_data["allowNoCredit"],
105
- "allowCommercialUse": json_data["allowCommercialUse"],
106
- "allowDerivatives": json_data["allowDerivatives"],
107
- "allowDifferentLicense": json_data["allowDifferentLicense"]
108
- }
109
- return info
110
- return None
111
 
112
- def download_files(info, folder="."):
113
- downloaded_files = {
114
- "imageName": [],
115
- "imagePrompt": [],
116
- "imageNegativePrompt": [],
117
- "weightName": []
 
 
 
 
 
 
 
 
 
 
 
118
  }
119
- for item in info["urls_to_download"]:
120
- download_file(item["url"], item["filename"], folder)
121
- downloaded_files[item["type"]].append(item["filename"])
122
- if(item["type"] == "imageName"):
123
- prompt_clean = re.sub(r'<.*?>', '', item["prompt"])
124
- negative_prompt_clean = re.sub(r'<.*?>', '', item["negative_prompt"])
125
- downloaded_files["imagePrompt"].append(prompt_clean)
126
- downloaded_files["imageNegativePrompt"].append(negative_prompt_clean)
127
- return downloaded_files
128
-
129
- def download_file(url, filename, folder="."):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  headers = {}
 
131
  try:
132
- response = requests.get(url, headers=headers)
 
 
 
 
 
133
  response.raise_for_status()
134
- except requests.exceptions.HTTPError as e:
135
- print(e)
136
- if response.status_code == 401:
137
- headers['Authorization'] = f'Bearer {os.environ["CIVITAI_API"]}'
138
- try:
139
- response = requests.get(url, headers=headers)
140
- response.raise_for_status()
141
- except requests.exceptions.RequestException as e:
142
- raise gr.Error(f"Error downloading file: {e}")
143
- else:
144
- raise gr.Error(f"Error downloading file: {e}")
145
- except requests.exceptions.RequestException as e:
146
- raise gr.Error(f"Error downloading file: {e}")
147
 
148
- with open(f"{folder}/{filename}", 'wb') as f:
149
- f.write(response.content)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
150
 
151
- def process_url(url, profile, do_download=True, folder="."):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
152
  json_data = get_json_data(url)
153
  if json_data:
154
  if check_nsfw(json_data, profile):
155
  info = extract_info(json_data)
156
  if info:
157
- if(do_download):
158
- downloaded_files = download_files(info, folder)
159
- else:
160
- downloaded_files = []
161
- return info, downloaded_files
162
  else:
163
- raise gr.Error("Only SDXL LoRAs are supported for now")
 
 
 
 
 
 
 
164
  else:
165
- raise gr.Error("This model has content tagged as unsafe by CivitAI")
166
  else:
167
- raise gr.Error("Something went wrong in fetching CivitAI API")
168
 
169
- def create_readme(info, downloaded_files, user_repo_id, link_civit=False, is_author=True, folder="."):
170
- readme_content = ""
171
  original_url = f"https://civitai.com/models/{info['modelId']}"
172
  link_civit_disclaimer = f'([CivitAI]({original_url}))'
173
  non_author_disclaimer = f'This model was originally uploaded on [CivitAI]({original_url}), by [{info["creator"]}](https://civitai.com/user/{info["creator"]}/models). The information below was provided by the author on CivitAI:'
174
- default_tags = ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "migrated"]
175
- civit_tags = [t.replace(":", "") for t in info["tags"] if t not in default_tags]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  tags = default_tags + civit_tags
177
- unpacked_tags = "\n- ".join(tags)
178
 
179
- trained_words = info['trainedWords'] if 'trainedWords' in info and info['trainedWords'] else []
180
  formatted_words = ', '.join(f'`{word}`' for word in trained_words)
181
- if formatted_words:
182
- trigger_words_section = f"""## Trigger words
183
- You should use {formatted_words} to trigger the image generation.
184
- """
185
- else:
186
- trigger_words_section = ""
187
 
188
  widget_content = ""
189
- for index, (prompt, negative_prompt, image) in enumerate(zip(downloaded_files["imagePrompt"], downloaded_files["imageNegativePrompt"], downloaded_files["imageName"])):
190
- escaped_prompt = prompt.replace("'", "''")
191
- negative_prompt_content = f"""parameters:
192
- negative_prompt: {negative_prompt}
193
- """ if negative_prompt else ""
194
- widget_content += f"""- text: '{escaped_prompt if escaped_prompt else ' ' }'
 
 
 
 
 
 
 
195
  {negative_prompt_content}
196
  output:
197
  url: >-
198
- {image}
199
  """
200
- dtype = "torch.bfloat16" if info["baseModel"] == "black-forest-labs/FLUX.1-dev" or info["baseModel"] == "black-forest-labs/FLUX.1-schnell" else "torch.float16"
 
201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
  content = f"""---
203
  license: other
204
  license_name: bespoke-lora-trained-license
205
- license_link: https://multimodal.art/civitai-licenses?allowNoCredit={info["allowNoCredit"]}&allowCommercialUse={info["allowCommercialUse"][0] if info["allowCommercialUse"] else 1}&allowDerivatives={info["allowDerivatives"]}&allowDifferentLicense={info["allowDifferentLicense"]}
206
  tags:
207
  - {unpacked_tags}
208
-
209
  base_model: {info["baseModel"]}
210
- instance_prompt: {info['trainedWords'][0] if 'trainedWords' in info and len(info['trainedWords']) > 0 else ''}
211
  widget:
212
  {widget_content}
213
  ---
@@ -217,224 +367,388 @@ widget:
217
  <Gallery />
218
 
219
  {non_author_disclaimer if not is_author else ''}
220
-
221
  {link_civit_disclaimer if link_civit else ''}
222
 
223
  ## Model description
224
-
225
  {info["description"]}
226
 
227
  {trigger_words_section}
228
 
229
  ## Download model
230
-
231
  Weights for this model are available in Safetensors format.
232
-
233
- [Download](/{user_repo_id}/tree/main) them in the Files & versions tab.
234
 
235
  ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
 
236
 
237
- ```py
238
- from diffusers import AutoPipelineForText2Image
239
- import torch
240
-
241
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
242
 
243
- pipeline = AutoPipelineForText2Image.from_pretrained('{info["baseModel"]}', torch_dtype={dtype}).to(device)
244
- pipeline.load_lora_weights('{user_repo_id}', weight_name='{downloaded_files["weightName"][0]}')
245
- image = pipeline('{prompt if prompt else (formatted_words if formatted_words else 'Your custom prompt')}').images[0]
246
- ```
247
 
248
- For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
249
- """
250
- #for index, (image, prompt) in enumerate(zip(downloaded_files["imageName"], downloaded_files["imagePrompt"])):
251
- # if index == 1:
252
- # content += f"## Image examples for the model:\n![Image {index}]({image})\n> {prompt}\n"
253
- # elif index > 1:
254
- # content += f"\n![Image {index}]({image})\n> {prompt}\n"
255
- readme_content += content + "\n"
256
- with open(f"{folder}/README.md", "w") as file:
257
- file.write(readme_content)
258
-
259
- def get_creator(username):
260
  url = f"https://civitai.com/api/trpc/user.getCreator?input=%7B%22json%22%3A%7B%22username%22%3A%22{username}%22%2C%22authed%22%3Atrue%7D%7D"
261
  headers = {
262
- "authority": "civitai.com",
263
- "accept": "*/*",
264
- "accept-language": "en-BR,en;q=0.9,pt-BR;q=0.8,pt;q=0.7,es-ES;q=0.6,es;q=0.5,de-LI;q=0.4,de;q=0.3,en-GB;q=0.2,en-US;q=0.1,sk;q=0.1",
265
- "content-type": "application/json",
266
- "cookie": f'{os.environ["COOKIE_INFO"]}',
267
- "if-modified-since": "Tue, 22 Aug 2023 07:18:52 GMT",
268
  "referer": f"https://civitai.com/user/{username}/models",
269
- "sec-ch-ua": "\"Not.A/Brand\";v=\"8\", \"Chromium\";v=\"114\", \"Google Chrome\";v=\"114\"",
270
- "sec-ch-ua-mobile": "?0",
271
- "sec-ch-ua-platform": "macOS",
272
- "sec-fetch-dest": "empty",
273
- "sec-fetch-mode": "cors",
274
- "sec-fetch-site": "same-origin",
275
- "user-agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
276
  }
277
- response = requests.get(url, headers=headers)
 
 
 
 
 
 
278
 
279
- return response.json()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
 
281
- def extract_huggingface_username(username):
282
- data = get_creator(username)
283
- links = data.get('result', {}).get('data', {}).get('json', {}).get('links', [])
284
- for link in links:
285
- url = link.get('url', '')
286
- if url.startswith('https://huggingface.co/') or url.startswith('https://www.huggingface.co/'):
287
- username = url.split('/')[-1]
288
- return username
289
 
290
- return None
 
 
 
 
 
 
291
 
 
 
 
 
 
 
 
 
 
292
 
293
- def check_civit_link(profile: Optional[gr.OAuthProfile], url):
294
- info, _ = process_url(url, profile, do_download=False)
295
- hf_username = extract_huggingface_username(info['creator'])
296
- attributes_methods = dir(profile)
297
 
298
- if(profile.username == "multimodalart"):
299
- return '', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True)
300
-
301
- if(not hf_username):
302
- no_username_text = f'If you are {info["creator"]} on CivitAI, hi! Your CivitAI profile seems to not have information about your Hugging Face account. Please visit <a href="https://civitai.com/user/account" target="_blank">https://civitai.com/user/account</a> and include your 🤗 username there, here\'s mine:<br><img width="60%" src="https://i.imgur.com/hCbo9uL.png" /><br>(if you are not {info["creator"]}, you cannot submit their model at this time)'
303
- return no_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False)
304
- if(profile.username != hf_username):
305
- unmatched_username_text = '<h4>Oops, the Hugging Face account in your CivitAI profile seems to be different than the one your are using here. Please visit <a href="https://civitai.com/user/account">https://civitai.com/user/account</a> and update it there to match your Hugging Face account<br><img src="https://i.imgur.com/hCbo9uL.png" /></h4>'
306
- return unmatched_username_text, gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False)
307
- else:
308
- return '', gr.update(interactive=True), gr.update(visible=False), gr.update(visible=True)
309
 
310
- def swap_fill(profile: Optional[gr.OAuthProfile]):
311
- if profile is None:
312
- return gr.update(visible=True), gr.update(visible=False)
313
- else:
314
- return gr.update(visible=False), gr.update(visible=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
315
 
316
- def show_output():
317
  return gr.update(visible=True)
318
 
319
- def list_civit_models(username):
320
- url = f"https://civitai.com/api/v1/models?username={username}&limit=100"
 
 
321
  json_models_list = []
322
-
323
- while url:
324
- response = requests.get(url)
325
- data = response.json()
326
-
327
- # Add current page items to the list
328
- json_models_list.extend(data.get('items', []))
329
-
330
- # Check if there is a nextPage URL in the metadata
331
- metadata = data.get('metadata', {})
332
- url = metadata.get('nextPage', None)
333
- urls = ""
334
- for model in json_models_list:
335
- urls += f'https://civitai.com/models/{model["id"]}/{slugify(model["name"])}\n'
 
 
 
 
 
336
 
337
- return urls
338
-
339
- def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], oauth_token: gr.OAuthToken, url, link_civit=False):
340
- if not profile.name:
341
- return gr.Error("Are you sure you are logged in?")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
 
343
- folder = str(uuid.uuid4())
344
- os.makedirs(folder, exist_ok=False)
345
- gr.Info(f"Starting download of model {url}")
346
- info, downloaded_files = process_url(url, profile, folder=folder)
347
- username = {profile.username}
348
- slug_name = slugify(info["name"])
349
- user_repo_id = f"{profile.username}/{slug_name}"
350
- create_readme(info, downloaded_files, user_repo_id, link_civit, folder=folder)
351
  try:
352
- create_repo(repo_id=user_repo_id, private=True, exist_ok=True, token=oauth_token.token)
353
- gr.Info(f"Starting to upload repo {user_repo_id} to Hugging Face...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354
  upload_folder(
355
- folder_path=folder,
356
- repo_id=user_repo_id,
357
- repo_type="model",
358
- token=oauth_token.token
359
  )
360
- update_repo_visibility(repo_id=user_repo_id, private=False, token=oauth_token.token)
361
- gr.Info(f"Model uploaded!")
 
 
 
 
362
  except Exception as e:
363
- print(e)
364
- raise gr.Error("Your Hugging Face Token expired. Log out and in again to upload your models.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365
 
366
- return f'''# Model uploaded to 🤗!
367
- ## Access it here [{user_repo_id}](https://huggingface.co/{user_repo_id}) '''
368
-
369
- def bulk_upload(profile: Optional[gr.OAuthProfile], oauth_token: gr.OAuthToken, urls, link_civit=False):
370
- urls = urls.split("\n")
371
- print(urls)
372
- upload_results = ""
373
- for url in urls:
374
- if(url):
375
- try:
376
- upload_result = upload_civit_to_hf(profile, oauth_token, url, link_civit)
377
- upload_results += upload_result+"\n"
378
- except Exception as e:
379
- gr.Warning(f"Error uploading the model {url}")
380
- return upload_results
 
 
 
 
 
381
 
 
382
  css = '''
383
- #login {
384
- width: 100% !important;
385
- margin: 0 auto;
386
- }
387
- #disabled_upload{
388
- opacity: 0.5;
389
- pointer-events:none;
390
- }
391
  '''
392
 
393
- with gr.Blocks(css=css) as demo:
 
 
 
 
394
  gr.Markdown('''# Upload your CivitAI LoRA to Hugging Face 🤗
395
  By uploading your LoRAs to Hugging Face you get diffusers compatibility, a free GPU-based Inference Widget, you'll be listed in [LoRA Studio](https://lorastudio.co/models) after a short review, and get the possibility to submit your model to the [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer) ✨
396
  ''')
397
- gr.LoginButton(elem_id="login")
398
- with gr.Column(elem_id="disabled_upload") as disabled_area:
399
- with gr.Row():
400
- submit_source_civit = gr.Textbox(
401
- placeholder="https://civitai.com/models/144684/pixelartredmond-pixel-art-loras-for-sd-xl",
402
- label="CivitAI model URL",
403
- info="URL of the CivitAI LoRA",
404
- )
405
- submit_button_civit = gr.Button("Upload model to Hugging Face and submit", interactive=False)
 
 
 
 
 
406
  with gr.Column(visible=False) as enabled_area:
407
- with gr.Column():
408
- submit_source_civit = gr.Textbox(
409
- placeholder="https://civitai.com/models/144684/pixelartredmond-pixel-art-loras-for-sd-xl",
410
- label="CivitAI model URL",
411
- info="URL of the CivitAI LoRA",
 
 
 
 
 
412
 
413
- )
414
- with gr.Accordion("Bulk upload (bring in multiple LoRAs)", open=False):
415
- civit_username_to_bulk = gr.Textbox(label="CivitAI username (optional)", info="Type your CivitAI username here to automagically fill the bulk models URLs list below (optional, you can paste links down here directly)")
416
- submit_bulk_civit = gr.Textbox(
417
- label="CivitAI bulk models URLs",
418
- info="Add one URL per line",
419
- lines=6,
 
 
 
 
 
 
 
420
  )
421
- link_civit = gr.Checkbox(label="Link back to CivitAI?", value=False)
422
- bulk_button = gr.Button("Bulk upload")
423
 
424
- instructions = gr.HTML("")
425
- try_again_button = gr.Button("I have added my HF profile to my account (it may take 1 minute to refresh)", visible=False)
426
- submit_button_civit = gr.Button("Upload model to Hugging Face", interactive=False)
427
- output = gr.Markdown(label="Output progress", visible=False)
428
 
429
- demo.load(fn=swap_fill, outputs=[disabled_area, enabled_area], queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430
 
431
- submit_source_civit.change(fn=check_civit_link, inputs=[submit_source_civit], outputs=[instructions, submit_button_civit, try_again_button, submit_button_civit])
432
- civit_username_to_bulk.change(fn=list_civit_models, inputs=[civit_username_to_bulk], outputs=[submit_bulk_civit])
433
- try_again_button.click(fn=check_civit_link, inputs=[submit_source_civit], outputs=[instructions, submit_button_civit, try_again_button, submit_button_civit])
 
 
 
 
434
 
435
- submit_button_civit.click(fn=show_output, inputs=[], outputs=[output]).then(fn=upload_civit_to_hf, inputs=[submit_source_civit, link_civit], outputs=[output])
436
- bulk_button.click(fn=show_output, inputs=[], outputs=[output]).then(fn=bulk_upload, inputs=[submit_bulk_civit, link_civit], outputs=[output])
437
- #gr.LogoutButton(elem_id="logout")
 
 
 
 
 
 
438
 
439
- demo.queue(default_concurrency_limit=50)
440
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import requests
2
  import os
3
  import gradio as gr
4
+ from huggingface_hub import update_repo_visibility, upload_folder, create_repo, upload_file
5
  from slugify import slugify
 
6
  import re
7
  import uuid
8
+ from typing import Optional, Dict, Any, List
9
  import json
10
+ import shutil # For cleaning up local folders
11
+ import traceback # For debugging
12
+
13
+ TRUSTED_UPLOADERS = [
14
+ "KappaNeuro", "CiroN2022", "multimodalart", "Norod78", "joachimsallstrom",
15
+ "blink7630", "e-n-v-y", "DoctorDiffusion", "RalFinger", "artificialguybr"
16
+ ]
17
 
18
+ # --- Helper Functions (CivitAI API, Data Extraction, File Handling) ---
19
 
20
+ def get_json_data(url: str) -> Optional[Dict[str, Any]]:
21
  url_split = url.split('/')
22
+ if len(url_split) < 5 or not url_split[4].isdigit(): # Check if model ID is present and numeric
23
+ print(f"Error: Invalid CivitAI URL format or missing model ID: {url}")
24
+ # Try to extract model ID if it's just the ID
25
+ if url.isdigit():
26
+ model_id = url
27
+ else:
28
+ return None
29
+ else:
30
+ model_id = url_split[4]
31
+
32
+ api_url = f"https://civitai.com/api/v1/models/{model_id}"
33
  try:
34
+ response = requests.get(api_url, timeout=15)
35
  response.raise_for_status()
36
  return response.json()
37
  except requests.exceptions.RequestException as e:
38
+ print(f"Error fetching JSON data from {api_url}: {e}")
39
  return None
40
 
41
+ def check_nsfw(json_data: Dict[str, Any], profile: Optional[gr.OAuthProfile]) -> bool:
42
+ if json_data.get("nsfw", False):
43
+ print(f"Model {json_data.get('id', 'Unknown')} flagged as NSFW at model level.")
44
  return False
45
+
46
+ if profile and profile.username in TRUSTED_UPLOADERS:
47
+ print(f"Trusted uploader {profile.username}, bypassing strict image NSFW check for model {json_data.get('id', 'Unknown')}.")
48
  return True
49
+
50
+ for model_version in json_data.get("modelVersions", []):
51
+ for image_media in model_version.get("images", []): # 'images' can contain videos
52
+ if image_media.get("nsfwLevel", 0) > 5: # Allow 0-5 (None, Soft, Moderate, Mature, X)
53
+ print(f"Model {json_data.get('id', 'Unknown')} version {model_version.get('id')} has media with nsfwLevel > 5.")
54
  return False
55
  return True
56
 
57
+ def get_prompts_from_image(image_id: int) -> (str, str):
 
58
  url = f'https://civitai.com/api/trpc/image.getGenerationData?input={{"json":{{"id":{image_id}}}}}'
 
 
 
59
  prompt = ""
60
  negative_prompt = ""
61
+ try:
62
+ response = requests.get(url, timeout=10)
63
+ if response.status_code == 200:
64
+ data = response.json()
65
+ result = data.get('result', {}).get('data', {}).get('json', {})
66
+ if result and result.get('meta') is not None:
67
+ prompt = result['meta'].get('prompt', "")
68
+ negative_prompt = result['meta'].get('negativePrompt', "")
69
+ # else:
70
+ # print(f"Prompt fetch for {image_id}: Status {response.status_code}")
71
+ except requests.exceptions.RequestException as e:
72
+ print(f"Error fetching prompt data for image_id {image_id}: {e}")
73
  return prompt, negative_prompt
74
 
75
+ def extract_info(json_data: Dict[str, Any]) -> Optional[Dict[str, Any]]:
76
+ if json_data.get("type") != "LORA":
77
+ return None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
 
79
+ model_mapping = {
80
+ "SDXL 1.0": "stabilityai/stable-diffusion-xl-base-1.0", "SDXL 0.9": "stabilityai/stable-diffusion-xl-base-1.0",
81
+ "SD 1.5": "runwayml/stable-diffusion-v1-5", "SD 1.4": "CompVis/stable-diffusion-v1-4",
82
+ "SD 2.1": "stabilityai/stable-diffusion-2-1-base", "SD 2.0": "stabilityai/stable-diffusion-2-base",
83
+ "SD 2.1 768": "stabilityai/stable-diffusion-2-1", "SD 2.0 768": "stabilityai/stable-diffusion-2",
84
+ "SD 3": "stabilityai/stable-diffusion-3-medium-diffusers",
85
+ "SD 3.5": "stabilityai/stable-diffusion-3-medium",
86
+ "SD 3.5 Large": "stabilityai/stable-diffusion-3-medium", # Adjusted to medium as large might not be public LoRA base
87
+ "SD 3.5 Medium": "stabilityai/stable-diffusion-3-medium",
88
+ "SD 3.5 Large Turbo": "stabilityai/stable-diffusion-3-medium-turbo", # Placeholder
89
+ "Flux.1 D": "black-forest-labs/FLUX.1-dev", "Flux.1 S": "black-forest-labs/FLUX.1-schnell",
90
+ "LTXV": "Lightricks/LTX-Video-0.9.7-dev",
91
+ "Hunyuan Video": "hunyuanvideo-community/HunyuanVideo", # Default T2V
92
+ "Wan Video 1.3B t2v": "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
93
+ "Wan Video 14B t2v": "Wan-AI/Wan2.1-T2V-14B-Diffusers",
94
+ "Wan Video 14B i2v 480p": "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers",
95
+ "Wan Video 14B i2v 720p": "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers",
96
  }
97
+
98
+ for model_version in json_data.get("modelVersions", []):
99
+ civic_base_model_name = model_version.get("baseModel")
100
+ if civic_base_model_name in model_mapping:
101
+ base_model_hf_name = model_mapping[civic_base_model_name]
102
+
103
+ urls_to_download: List[Dict[str, Any]] = []
104
+ primary_file_found = False
105
+ for file_data in model_version.get("files", []):
106
+ if file_data.get("primary") and file_data.get("type") == "Model":
107
+ urls_to_download.append({
108
+ "url": file_data["downloadUrl"],
109
+ "filename": os.path.basename(file_data["name"]),
110
+ "type": "weightName", "is_video": False
111
+ })
112
+ primary_file_found = True
113
+ break
114
+
115
+ if not primary_file_found: continue
116
+
117
+ for media_data in model_version.get("images", []): # CivitAI uses 'images' for both images and videos
118
+ if media_data.get("nsfwLevel", 0) > 5: continue
119
+
120
+ media_url_parts = media_data["url"].split("/")
121
+ if not media_url_parts: continue
122
+
123
+ filename_part = media_url_parts[-1]
124
+ # Robustly extract ID: try to get it before the first dot or before query params
125
+ id_candidate = filename_part.split(".")[0].split("?")[0]
126
+
127
+ prompt, negative_prompt = "", ""
128
+ if media_data.get("hasMeta", False) and media_data.get("type") == "image": # Prompts mainly for images
129
+ if id_candidate.isdigit():
130
+ try:
131
+ prompt, negative_prompt = get_prompts_from_image(int(id_candidate))
132
+ except ValueError:
133
+ print(f"Warning: Non-integer ID '{id_candidate}' for prompt fetching.")
134
+ except Exception as e:
135
+ print(f"Warning: Prompt fetch failed for ID {id_candidate}: {e}")
136
+
137
+ is_video_file = media_data.get("type") == "video"
138
+ media_type_key = "videoName" if is_video_file else "imageName"
139
+
140
+ urls_to_download.append({
141
+ "url": media_data["url"], "filename": os.path.basename(filename_part),
142
+ "type": media_type_key, "prompt": prompt, "negative_prompt": negative_prompt,
143
+ "is_video": is_video_file
144
+ })
145
+
146
+ # Ensure 'allowCommercialUse' is processed correctly
147
+ allow_commercial_use = json_data.get("allowCommercialUse", "Sell") # Default
148
+ if isinstance(allow_commercial_use, list):
149
+ allow_commercial_use = allow_commercial_use[0] if allow_commercial_use else "Sell"
150
+ elif not isinstance(allow_commercial_use, str): # If boolean or other, convert to expected string
151
+ allow_commercial_use = "Sell" if allow_commercial_use else "None"
152
+
153
+
154
+ info_dict = {
155
+ "urls_to_download": urls_to_download, "id": model_version.get("id"),
156
+ "baseModel": base_model_hf_name, "modelId": model_version.get("modelId", json_data.get("id")),
157
+ "name": json_data.get("name", "Untitled LoRA"),
158
+ "description": json_data.get("description", "No description provided."),
159
+ "trainedWords": model_version.get("trainedWords", []),
160
+ "creator": json_data.get("creator", {}).get("username", "Unknown Creator"),
161
+ "tags": json_data.get("tags", []),
162
+ "allowNoCredit": json_data.get("allowNoCredit", True),
163
+ "allowCommercialUse": allow_commercial_use,
164
+ "allowDerivatives": json_data.get("allowDerivatives", True),
165
+ "allowDifferentLicense": json_data.get("allowDifferentLicense", True)
166
+ }
167
+ return info_dict
168
+ return None
169
+
170
+ def download_file_from_url(url: str, filename: str, folder: str = "."):
171
  headers = {}
172
+ local_filepath = os.path.join(folder, filename)
173
  try:
174
+ # Add a User-Agent to mimic a browser, as some CDNs might block default requests User-Agent
175
+ headers['User-Agent'] = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
176
+ if "CIVITAI_API_TOKEN" in os.environ and os.environ["CIVITAI_API_TOKEN"]: # Check for token existence and value
177
+ headers['Authorization'] = f'Bearer {os.environ["CIVITAI_API_TOKEN"]}'
178
+
179
+ response = requests.get(url, headers=headers, stream=True, timeout=120) # Increased timeout
180
  response.raise_for_status()
 
 
 
 
 
 
 
 
 
 
 
 
 
181
 
182
+ with open(local_filepath, 'wb') as f:
183
+ for chunk in response.iter_content(chunk_size=8192):
184
+ f.write(chunk)
185
+ # print(f"Successfully downloaded {filename} to {folder}")
186
+
187
+ except requests.exceptions.HTTPError as e_http:
188
+ # If 401/403 and no token was used, it's a clear auth issue.
189
+ # If token was used and still 401/403, token might be invalid or insufficient.
190
+ if e_http.response.status_code in [401, 403] and not headers.get('Authorization'):
191
+ print(f"Authorization error downloading {url}. Consider setting CIVITAI_API_TOKEN for restricted files.")
192
+ raise gr.Error(f"HTTP Error downloading {filename}: {e_http.response.status_code} {e_http.response.reason}. URL: {url}")
193
+ except requests.exceptions.RequestException as e_req:
194
+ raise gr.Error(f"Request Error downloading {filename}: {e_req}. URL: {url}")
195
+
196
+
197
+ def download_files(info: Dict[str, Any], folder: str = ".") -> Dict[str, List[Any]]:
198
+ downloaded_media_items: List[Dict[str, Any]] = []
199
+ downloaded_weights: List[str] = []
200
 
201
+ for item in info["urls_to_download"]:
202
+ filename_to_save = item["filename"]
203
+
204
+ # Sanitize filename (though os.path.basename usually handles paths well)
205
+ filename_to_save = re.sub(r'[<>:"/\\|?*]', '_', filename_to_save) # Basic sanitization
206
+ if not filename_to_save: # Handle case where filename becomes empty
207
+ filename_to_save = f"downloaded_file_{uuid.uuid4().hex[:8]}" + os.path.splitext(item["url"])[1]
208
+
209
+
210
+ gr.Info(f"Downloading {filename_to_save}...")
211
+ download_file_from_url(item["url"], filename_to_save, folder)
212
+
213
+ if item["type"] == "weightName":
214
+ downloaded_weights.append(filename_to_save)
215
+ elif item["type"] in ["imageName", "videoName"]:
216
+ prompt_clean = re.sub(r'<.*?>', '', item.get("prompt", ""))
217
+ negative_prompt_clean = re.sub(r'<.*?>', '', item.get("negative_prompt", ""))
218
+ downloaded_media_items.append({
219
+ "filename": filename_to_save, "prompt": prompt_clean,
220
+ "negative_prompt": negative_prompt_clean, "is_video": item.get("is_video", False)
221
+ })
222
+
223
+ return {"media_items": downloaded_media_items, "weightName": downloaded_weights}
224
+
225
+ def process_url(url: str, profile: Optional[gr.OAuthProfile], do_download: bool = True, folder: str = ".") -> (Optional[Dict[str, Any]], Optional[Dict[str, List[Any]]]):
226
  json_data = get_json_data(url)
227
  if json_data:
228
  if check_nsfw(json_data, profile):
229
  info = extract_info(json_data)
230
  if info:
231
+ downloaded_files_dict = None
232
+ if do_download:
233
+ downloaded_files_dict = download_files(info, folder)
234
+ return info, downloaded_files_dict
 
235
  else:
236
+ model_type = json_data.get("type", "Unknown type")
237
+ base_models_in_json = [mv.get("baseModel", "Unknown base") for mv in json_data.get("modelVersions", [])]
238
+ error_message = f"This LoRA is not supported. Details:\n"
239
+ error_message += f"- Model Type: {model_type} (expected LORA)\n"
240
+ if base_models_in_json:
241
+ error_message += f"- Detected Base Models in CivitAI: {', '.join(list(set(base_models_in_json)))}\n"
242
+ error_message += "Ensure it's a LORA for a supported base (SD, SDXL, Pony, Flux, LTXV, Hunyuan, Wan) and has primary files."
243
+ raise gr.Error(error_message)
244
  else:
245
+ raise gr.Error("This model is flagged as NSFW by CivitAI or its media exceeds the allowed NSFW level (max level 5).")
246
  else:
247
+ raise gr.Error("Could not fetch CivitAI API data. Check URL or model ID. Example: https://civitai.com/models/12345 or just 12345")
248
 
249
+ # --- README Creation ---
250
+ def create_readme(info: Dict[str, Any], downloaded_files: Dict[str, List[Any]], user_repo_id: str, link_civit: bool = False, is_author: bool = True, folder: str = "."):
251
  original_url = f"https://civitai.com/models/{info['modelId']}"
252
  link_civit_disclaimer = f'([CivitAI]({original_url}))'
253
  non_author_disclaimer = f'This model was originally uploaded on [CivitAI]({original_url}), by [{info["creator"]}](https://civitai.com/user/{info["creator"]}/models). The information below was provided by the author on CivitAI:'
254
+
255
+ is_video_model = False
256
+ video_base_models_hf = [
257
+ "Lightricks/LTX-Video-0.9.7-dev", "hunyuanvideo-community/HunyuanVideo",
258
+ "hunyuanvideo-community/HunyuanVideo-I2V", "Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
259
+ "Wan-AI/Wan2.1-T2V-14B-Diffusers", "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers",
260
+ "Wan-AI/Wan2.1-I2V-14B-720P-Diffusers"
261
+ ]
262
+ if info["baseModel"] in video_base_models_hf: is_video_model = True
263
+ is_i2v_model = "i2v" in info["baseModel"].lower()
264
+
265
+ default_tags = ["lora", "diffusers", "migrated"]
266
+ if is_video_model:
267
+ default_tags.append("video")
268
+ default_tags.append("image-to-video" if is_i2v_model else "text-to-video")
269
+ default_tags.append("template:video-lora") # Added a template tag for video
270
+ else:
271
+ default_tags.extend(["text-to-image", "stable-diffusion", "template:sd-lora"])
272
+
273
+ civit_tags = [t.replace(":", "").strip() for t in info.get("tags", []) if t.replace(":", "").strip() and t.replace(":", "").strip() not in default_tags]
274
  tags = default_tags + civit_tags
275
+ unpacked_tags = "\n- ".join(sorted(list(set(tags))))
276
 
277
+ trained_words = [word for word in info.get('trainedWords', []) if word]
278
  formatted_words = ', '.join(f'`{word}`' for word in trained_words)
279
+ trigger_words_section = f"## Trigger words\nYou should use {formatted_words} to trigger the generation." if formatted_words else ""
 
 
 
 
 
280
 
281
  widget_content = ""
282
+ media_items_for_widget = downloaded_files.get("media_items", [])
283
+ if not media_items_for_widget:
284
+ widget_content = "# No example media available for widget.\n"
285
+ else:
286
+ for media_item in media_items_for_widget[:5]: # Limit to 5 examples for widget
287
+ prompt = media_item["prompt"]
288
+ negative_prompt = media_item["negative_prompt"]
289
+ filename = media_item["filename"]
290
+
291
+ escaped_prompt = prompt.replace("'", "''").replace("\n", " ") # Escape and remove newlines
292
+ negative_prompt_content = f"""parameters:
293
+ negative_prompt: '{negative_prompt.replace("'", "''").replace("\n", " ")}'""" if negative_prompt else ""
294
+ widget_content += f"""- text: '{escaped_prompt if escaped_prompt else ' ' }'
295
  {negative_prompt_content}
296
  output:
297
  url: >-
298
+ {filename}
299
  """
300
+ flux_models_bf16 = ["black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-schnell"]
301
+ dtype = "torch.bfloat16" if info["baseModel"] in flux_models_bf16 else "torch.float16"
302
 
303
+ pipeline_import = "AutoPipelineForText2Image"
304
+ pipeline_call_example = f"image = pipeline('{formatted_words if formatted_words else 'Your custom prompt'}').images[0]"
305
+ example_prompt_for_pipeline = formatted_words if formatted_words else 'Your custom prompt'
306
+ if media_items_for_widget and media_items_for_widget[0]["prompt"]:
307
+ example_prompt_for_pipeline = media_items_for_widget[0]["prompt"]
308
+ pipeline_call_example = f"image = pipeline('{example_prompt_for_pipeline.replace ciclo '','' ')').images[0]"
309
+
310
+
311
+ if is_video_model:
312
+ pipeline_import = "DiffusionPipeline"
313
+ video_prompt_example = example_prompt_for_pipeline
314
+
315
+ pipeline_call_example = f"# Example prompt for video generation\nprompt = \"{video_prompt_example.replace ciclico '','' ')}\"\n"
316
+ pipeline_call_example += "# Adjust parameters like num_frames, num_inference_steps, height, width as needed for the specific pipeline.\n"
317
+ pipeline_call_example += "# video_frames = pipeline(prompt, num_frames=16, guidance_scale=7.5, num_inference_steps=25).frames # Example parameters"
318
+ if "LTX-Video" in info["baseModel"]:
319
+ pipeline_call_example += "\n# LTX-Video uses a specific setup. Check its model card on Hugging Face."
320
+ elif "HunyuanVideo" in info["baseModel"]:
321
+ pipeline_call_example += "\n# HunyuanVideo often uses custom pipeline scripts or specific classes (e.g., HunyuanDiTPipeline). Check its HF model card."
322
+ elif "Wan-AI" in info["baseModel"]:
323
+ pipeline_call_example += "\n# Wan-AI models (e.g., WanVideoTextToVideoPipeline) require specific pipeline classes. Check model card for usage."
324
+
325
+ weight_name = (downloaded_files["weightName"][0] if downloaded_files.get("weightName")
326
+ else "your_lora_weights.safetensors")
327
+
328
+ diffusers_code_block = f"""```py
329
+ from diffusers import {pipeline_import}
330
+ import torch
331
+
332
+ device = "cuda" if torch.cuda.is_available() else "cpu"
333
+
334
+ # Note: The pipeline class '{pipeline_import}' is a general suggestion.
335
+ # For specific video models (LTX, Hunyuan, Wan), you will likely need a dedicated pipeline class
336
+ # (e.g., TextToVideoSDPipeline, HunyuanDiTPipeline, WanVideoTextToVideoPipeline, etc.).
337
+ # Please refer to the documentation of the base model '{info["baseModel"]}' on Hugging Face for precise usage.
338
+ pipeline = {pipeline_import}.from_pretrained('{info["baseModel"]}', torch_dtype={dtype})
339
+ pipeline.to(device)
340
+
341
+ # Load LoRA weights
342
+ pipeline.load_lora_weights('{user_repo_id}', weight_name='{weight_name}')
343
+
344
+ # For some pipelines, you might need to fuse LoRA layers:
345
+ # pipeline.fuse_lora() # or pipeline.unfuse_lora()
346
+
347
+ # Example generation call (adjust parameters as needed for the specific pipeline)
348
+ {pipeline_call_example}
349
+ ```"""
350
+
351
+ commercial_use_val = info["allowCommercialUse"] # Already processed in extract_info
352
+
353
  content = f"""---
354
  license: other
355
  license_name: bespoke-lora-trained-license
356
+ license_link: https://multimodal.art/civitai-licenses?allowNoCredit={info["allowNoCredit"]}&allowCommercialUse={commercial_use_val}&allowDerivatives={info["allowDerivatives"]}&allowDifferentLicense={info["allowDifferentLicense"]}
357
  tags:
358
  - {unpacked_tags}
 
359
  base_model: {info["baseModel"]}
360
+ instance_prompt: {trained_words[0] if trained_words else ''}
361
  widget:
362
  {widget_content}
363
  ---
 
367
  <Gallery />
368
 
369
  {non_author_disclaimer if not is_author else ''}
 
370
  {link_civit_disclaimer if link_civit else ''}
371
 
372
  ## Model description
 
373
  {info["description"]}
374
 
375
  {trigger_words_section}
376
 
377
  ## Download model
 
378
  Weights for this model are available in Safetensors format.
379
+ [Download](/{user_repo_id}/tree/main/{weight_name}) the LoRA in the Files & versions tab.
 
380
 
381
  ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
382
+ {diffusers_code_block}
383
 
384
+ For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters).
385
+ """
386
+ readme_path = os.path.join(folder, "README.md")
387
+ with open(readme_path, "w", encoding="utf-8") as file:
388
+ file.write(content)
389
+ # print(f"README.md created at {readme_path}")
390
 
 
 
 
 
391
 
392
+ # --- Hugging Face Profile / Authorship ---
393
+ def get_creator(username: str) -> Dict:
394
+ if "COOKIE_INFO" not in os.environ or not os.environ["COOKIE_INFO"]:
395
+ print("Warning: COOKIE_INFO env var not set. Cannot fetch CivitAI creator's HF username.")
396
+ return {"result": {"data": {"json": {"links": []}}}}
397
+
 
 
 
 
 
 
398
  url = f"https://civitai.com/api/trpc/user.getCreator?input=%7B%22json%22%3A%7B%22username%22%3A%22{username}%22%2C%22authed%22%3Atrue%7D%7D"
399
  headers = {
400
+ "authority": "civitai.com", "accept": "*/*", "accept-language": "en-US,en;q=0.9",
401
+ "content-type": "application/json", "cookie": os.environ["COOKIE_INFO"],
 
 
 
 
402
  "referer": f"https://civitai.com/user/{username}/models",
403
+ "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/100.0.0.0 Safari/537.36"
 
 
 
 
 
 
404
  }
405
+ try:
406
+ response = requests.get(url, headers=headers, timeout=10)
407
+ response.raise_for_status()
408
+ return response.json()
409
+ except requests.RequestException as e:
410
+ print(f"Error fetching CivitAI creator data for {username}: {e}")
411
+ return {"result": {"data": {"json": {"links": []}}}}
412
 
413
+ def extract_huggingface_username(civitai_username: str) -> Optional[str]:
414
+ data = get_creator(civitai_username)
415
+ try:
416
+ links = data.get('result', {}).get('data', {}).get('json', {}).get('links', [])
417
+ if not isinstance(links, list): return None
418
+ for link in links:
419
+ if not isinstance(link, dict): continue
420
+ url = link.get('url', '')
421
+ if isinstance(url, str) and \
422
+ (url.startswith('https://huggingface.co/') or url.startswith('https://www.huggingface.co/')):
423
+ hf_username = url.split('/')[-1].split('?')[0].split('#')[0]
424
+ if hf_username: return hf_username
425
+ except Exception as e:
426
+ print(f"Error parsing CivitAI creator data for HF username: {e}")
427
+ return None
428
 
429
+ # --- Gradio UI Logic Functions ---
 
 
 
 
 
 
 
430
 
431
+ def check_civit_link(profile_state: Optional[gr.OAuthProfile], url_input: str):
432
+ url_input = url_input.strip()
433
+ if not url_input:
434
+ return "", gr.update(interactive=False, visible=False), gr.update(visible=False), gr.update(visible=False)
435
+
436
+ if not profile_state:
437
+ return "Please log in with Hugging Face first.", gr.update(interactive=False, visible=False), gr.update(visible=False), gr.update(visible=False)
438
 
439
+ try:
440
+ info, _ = process_url(url_input, profile_state, do_download=False)
441
+ if not info:
442
+ return "Could not process this CivitAI URL. Model might be unsupported.", gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False)
443
+ except gr.Error as e:
444
+ return str(e), gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False)
445
+ except Exception as e:
446
+ print(f"Unexpected error in check_civit_link: {e}\n{traceback.format_exc()}")
447
+ return f"An unexpected error occurred: {str(e)}", gr.update(interactive=False), gr.update(visible=True), gr.update(visible=False)
448
 
449
+ civitai_creator_username = info['creator']
450
+ hf_username_on_civitai = extract_huggingface_username(civitai_creator_username)
 
 
451
 
452
+ if profile_state.username in TRUSTED_UPLOADERS:
453
+ return f'Welcome, trusted uploader {profile_state.username}! You can upload this model by "{civitai_creator_username}".', gr.update(interactive=True, visible=True), gr.update(visible=False), gr.update(visible=True)
 
 
 
 
 
 
 
 
 
454
 
455
+ if not hf_username_on_civitai:
456
+ no_username_text = (
457
+ f'If you are "{civitai_creator_username}" on CivitAI, hi! Your CivitAI profile does not seem to have a Hugging Face username linked. '
458
+ f'Please visit <a href="https://civitai.com/user/account" target="_blank">your CivitAI account settings</a> and add your 🤗 username ({profile_state.username}). '
459
+ f'Example: <br/><img width="60%" src="https://i.imgur.com/hCbo9uL.png" alt="CivitAI profile settings example"/><br/>'
460
+ f'(If you are not "{civitai_creator_username}", you cannot submit their model at this time.)'
461
+ )
462
+ return no_username_text, gr.update(interactive=False, visible=False), gr.update(visible=True), gr.update(visible=False) # Hide upload, show try_again
463
+
464
+ if profile_state.username.lower() != hf_username_on_civitai.lower():
465
+ unmatched_username_text = (
466
+ f'The Hugging Face username on "{civitai_creator_username}"\'s CivitAI profile ("{hf_username_on_civitai}") '
467
+ f'does not match your logged-in Hugging Face account ("{profile_state.username}"). '
468
+ f'Please update it on <a href="https://civitai.com/user/account" target="_blank">CivitAI</a> or log in to Hugging Face as "{hf_username_on_civitai}".<br/>'
469
+ f'<img src="https://i.imgur.com/hCbo9uL.png" alt="CivitAI profile settings example"/>'
470
+ )
471
+ return unmatched_username_text, gr.update(interactive=False, visible=False), gr.update(visible=True), gr.update(visible=False) # Hide upload, show try_again
472
+
473
+ return f'Authorship verified for "{civitai_creator_username}" (🤗 {profile_state.username}). Ready to upload!', gr.update(interactive=True, visible=True), gr.update(visible=False), gr.update(visible=True) # Show upload, hide try_again
474
+
475
+ def handle_auth_change(profile: Optional[gr.OAuthProfile]):
476
+ # This function is called by demo.load when auth state changes
477
+ # It updates the visibility of UI areas and clears inputs.
478
+ if profile: # Logged in
479
+ return gr.update(visible=False), gr.update(visible=True), "", gr.update(value=""), gr.update(interactive=False, visible=False), gr.update(visible=False)
480
+ else: # Logged out
481
+ return gr.update(visible=True), gr.update(visible=False), "", gr.update(value=""), gr.update(interactive=False, visible=False), gr.update(visible=False)
482
 
483
+ def show_output_area():
484
  return gr.update(visible=True)
485
 
486
+ def list_civit_models(username: str) -> str:
487
+ if not username.strip(): return ""
488
+
489
+ url = f"https://civitai.com/api/v1/models?username={username}&limit=100&sort=Newest"
490
  json_models_list = []
491
+ page_count, max_pages = 0, 5 # Limit pages
492
+
493
+ gr.Info(f"Fetching LoRAs for CivitAI user: {username}...")
494
+ while url and page_count < max_pages:
495
+ try:
496
+ response = requests.get(url, timeout=10)
497
+ response.raise_for_status()
498
+ data = response.json()
499
+
500
+ current_items = data.get('items', [])
501
+ # Filter for LORAs and ensure they have a name for slugify
502
+ json_models_list.extend(item for item in current_items if item.get("type") == "LORA" and item.get("name"))
503
+
504
+ metadata = data.get('metadata', {})
505
+ url = metadata.get('nextPage', None)
506
+ page_count += 1
507
+ except requests.RequestException as e:
508
+ gr.Warning(f"Failed to fetch page {page_count + 1} for {username}: {e}")
509
+ break
510
 
511
+ if not json_models_list:
512
+ gr.Info(f"No suitable LoRA models found for {username} or failed to fetch.")
513
+ return ""
514
+
515
+ urls_text = "\n".join(
516
+ f'https://civitai.com/models/{model["id"]}/{slugify(model["name"])}'
517
+ for model in json_models_list
518
+ )
519
+ gr.Info(f"Found {len(json_models_list)} LoRA models for {username}.")
520
+ return urls_text.strip()
521
+
522
+ # --- Main Upload Functions ---
523
+ def upload_civit_to_hf(profile: Optional[gr.OAuthProfile], oauth_token_obj: gr.OAuthToken, url: str, link_civit_checkbox_val: bool):
524
+ if not profile or not profile.username:
525
+ raise gr.Error("User profile not available. Please log in.")
526
+ if not oauth_token_obj or not oauth_token_obj.token:
527
+ raise gr.Error("Hugging Face token not available. Please log in again.")
528
+
529
+ hf_auth_token = oauth_token_obj.token
530
+
531
+ folder_uuid = str(uuid.uuid4())
532
+ # Create a unique subfolder in a general 'temp_uploads' directory
533
+ base_temp_dir = "temp_uploads"
534
+ os.makedirs(base_temp_dir, exist_ok=True)
535
+ folder_path = os.path.join(base_temp_dir, folder_uuid)
536
+ os.makedirs(folder_path, exist_ok=True)
537
+
538
+ gr.Info(f"Starting processing of model {url}")
539
 
 
 
 
 
 
 
 
 
540
  try:
541
+ info, downloaded_data = process_url(url, profile, do_download=True, folder=folder_path)
542
+ if not info or not downloaded_data:
543
+ raise gr.Error("Failed to process URL or download files after initial checks.")
544
+
545
+ slug_name = slugify(info["name"])
546
+ user_repo_id = f"{profile.username}/{slug_name}"
547
+
548
+ is_author = False # Default
549
+ hf_username_on_civitai = extract_huggingface_username(info["creator"])
550
+ if profile.username in TRUSTED_UPLOADERS or \
551
+ (hf_username_on_civitai and profile.username.lower() == hf_username_on_civitai.lower()):
552
+ is_author = True # Or at least authorized to upload as/for them
553
+
554
+ create_readme(info, downloaded_data, user_repo_id, link_civit_checkbox_val, is_author=is_author, folder=folder_path)
555
+
556
+ repo_url_huggingface = f"https://huggingface.co/{user_repo_id}"
557
+
558
+ gr.Info(f"Creating/updating repository {user_repo_id} on Hugging Face...")
559
+ create_repo(repo_id=user_repo_id, private=True, exist_ok=True, token=hf_auth_token)
560
+
561
+ gr.Info(f"Starting upload to {repo_url_huggingface}...")
562
  upload_folder(
563
+ folder_path=folder_path, repo_id=user_repo_id, repo_type="model",
564
+ token=hf_auth_token, commit_message=f"Upload LoRA: {info['name']} from CivitAI ID {info['modelId']}"
 
 
565
  )
566
+ update_repo_visibility(repo_id=user_repo_id, private=False, token=hf_auth_token)
567
+ gr.Info(f"Model uploaded successfully!")
568
+
569
+ return f'''# Model uploaded to 🤗!
570
+ ## Access it here [{user_repo_id}]({repo_url_huggingface}) '''
571
+
572
  except Exception as e:
573
+ print(f"Error during Hugging Face repo operations for {url}: {e}\n{traceback.format_exc()}")
574
+ raise gr.Error(f"Upload failed for {url}: {str(e)}. Token might be expired. Try re-logging or check server logs.")
575
+ finally:
576
+ # Cleanup local folder
577
+ try:
578
+ if os.path.exists(folder_path):
579
+ shutil.rmtree(folder_path)
580
+ # print(f"Cleaned up temporary folder: {folder_path}")
581
+ except Exception as e_clean:
582
+ print(f"Error cleaning up folder {folder_path}: {e_clean}")
583
+
584
+
585
+ def bulk_upload(profile: Optional[gr.OAuthProfile], oauth_token_obj: gr.OAuthToken, urls_text: str, link_civit_checkbox_val: bool):
586
+ if not profile or not oauth_token_obj or not oauth_token_obj.token:
587
+ raise gr.Error("Authentication missing for bulk upload. Please log in.")
588
+
589
+ urls = [url.strip() for url in urls_text.splitlines() if url.strip()]
590
+ if not urls:
591
+ return "No URLs provided for bulk upload."
592
 
593
+ upload_results = []
594
+ total_urls = len(urls)
595
+ gr.Info(f"Starting bulk upload for {total_urls} models.")
596
+
597
+ for i, url in enumerate(urls):
598
+ gr.Info(f"Processing model {i+1}/{total_urls}: {url}")
599
+ try:
600
+ # Each call to upload_civit_to_hf will handle its own folder creation/cleanup
601
+ result_message = upload_civit_to_hf(profile, oauth_token_obj, url, link_civit_checkbox_val)
602
+ upload_results.append(result_message)
603
+ gr.Info(f"Successfully processed {url}")
604
+ except gr.Error as ge:
605
+ gr.Warning(f"Skipping model {url} due to error: {str(ge)}")
606
+ upload_results.append(f"Failed to upload {url}: {str(ge)}")
607
+ except Exception as e:
608
+ gr.Warning(f"Unhandled error uploading model {url}: {str(e)}")
609
+ upload_results.append(f"Failed to upload {url}: Unhandled exception - {str(e)}")
610
+ print(f"Unhandled exception during bulk upload for {url}: {e}\n{traceback.format_exc()}")
611
+
612
+ return "\n\n---\n\n".join(upload_results) if upload_results else "No URLs were processed or all failed."
613
 
614
+ # --- Gradio UI Definition ---
615
  css = '''
616
+ #login_button_area { margin-bottom: 10px; }
617
+ #disabled_upload_area { opacity: 0.6; pointer-events: none; }
618
+ .gr-html ul { list-style-type: disc; margin-left: 20px; }
619
+ .gr-html ol { list-style-type: decimal; margin-left: 20px; }
620
+ .gr-html a { color: #007bff; text-decoration: underline; }
621
+ .gr-html img { max-width: 100%; height: auto; margin-top: 5px; margin-bottom: 5px; border: 1px solid #ddd; }
 
 
622
  '''
623
 
624
+ with gr.Blocks(css=css, title="CivitAI to Hugging Face LoRA Uploader") as demo:
625
+ # States to hold authentication info globally within the Blocks context
626
+ auth_profile_state = gr.State()
627
+ # oauth_token_state = gr.State() # Token string will be passed directly from gr.OAuthToken
628
+
629
  gr.Markdown('''# Upload your CivitAI LoRA to Hugging Face 🤗
630
  By uploading your LoRAs to Hugging Face you get diffusers compatibility, a free GPU-based Inference Widget, you'll be listed in [LoRA Studio](https://lorastudio.co/models) after a short review, and get the possibility to submit your model to the [LoRA the Explorer](https://huggingface.co/spaces/multimodalart/LoraTheExplorer) ✨
631
  ''')
632
+
633
+ with gr.Row(elem_id="login_button_area"):
634
+ login_button = gr.LoginButton() # Default uses HF OAuth
635
+
636
+ # This column is visible when the user is NOT logged in
637
+ with gr.Column(visible=True, elem_id="disabled_upload_area") as disabled_area:
638
+ gr.HTML("<h3>Please log in with Hugging Face to enable uploads.</h3>")
639
+ gr.Textbox(
640
+ placeholder="e.g., https://civitai.com/models/12345/my-lora or just 12345",
641
+ label="CivitAI Model URL or ID (Log in to enable)",
642
+ interactive=False
643
+ )
644
+
645
+ # This column is visible when the user IS logged in
646
  with gr.Column(visible=False) as enabled_area:
647
+ gr.HTML("<h3 style='color:green;'>Logged in! You can now upload models.</h3>")
648
+
649
+ with gr.Tabs():
650
+ with gr.TabItem("Single Model Upload"):
651
+ submit_source_civit_enabled = gr.Textbox(
652
+ placeholder="e.g., https://civitai.com/models/12345/my-lora or just 12345",
653
+ label="CivitAI Model URL or ID",
654
+ info="Enter the full URL or just the numeric ID of the CivitAI LoRA model page.",
655
+ )
656
+ instructions_html = gr.HTML(elem_id="instructions_area")
657
 
658
+ try_again_button = gr.Button("I've updated my CivitAI profile (Re-check Authorship)", visible=False)
659
+
660
+ link_civit_checkbox_single = gr.Checkbox(label="Add a link back to CivitAI in the README?", value=True, visible=True)
661
+ submit_button_single_model = gr.Button("Upload This Model to Hugging Face", interactive=False, visible=False, variant="primary")
662
+
663
+ with gr.TabItem("Bulk Upload"):
664
+ civit_username_to_bulk = gr.Textbox(
665
+ label="Your CivitAI Username (Optional)",
666
+ info="Enter your CivitAI username to auto-populate the list below with your LoRAs (up to 50 newest)."
667
+ )
668
+ submit_bulk_civit_urls = gr.Textbox(
669
+ label="CivitAI Model URLs or IDs (One per line)",
670
+ info="Paste multiple CivitAI model page URLs or just IDs here, one on each line.",
671
+ lines=8,
672
  )
673
+ link_civit_checkbox_bulk = gr.Checkbox(label="Add a link back to CivitAI in READMEs?", value=True)
674
+ bulk_upload_button = gr.Button("Start Bulk Upload", variant="primary")
675
 
676
+ output_markdown_area = gr.Markdown(label="Upload Progress & Results", visible=False)
 
 
 
677
 
678
+ # --- Event Handlers Wiring ---
679
+
680
+ # Handle login/logout and initial load
681
+ # login_button.login() or logout() implicitly triggers demo.load()
682
+ # The .load event is triggered when the Gradio app starts or when login/logout happens.
683
+ # It receives profile and token from the gr.LoginButton's state.
684
+ # Inputs to handle_auth_change must match how gr.LoginButton provides them.
685
+ # LoginButton provides profile (OAuthProfile) and token (OAuthToken)
686
+ # These are implicitly passed to the function called by demo.load if it's the only .load.
687
+ # Using gr.State() for auth_profile_state.
688
+
689
+ # This demo.load will be triggered by login/logout from gr.LoginButton
690
+ # and also on initial page load.
691
+ demo.load(
692
+ fn=handle_auth_change,
693
+ inputs=[auth_profile_state], # Pass the state which will be updated by login
694
+ outputs=[disabled_area, enabled_area, instructions_html, submit_source_civit_enabled, submit_button_single_model, try_again_button],
695
+ api_name=False, queue=False
696
+ ).then(
697
+ # After login/logout, update the auth_profile_state
698
+ # This is a bit of a workaround to get profile into a state for other functions
699
+ lambda profile: profile, # Identity function
700
+ inputs=[gr.Variable()], # This will receive the profile from LoginButton
701
+ outputs=[auth_profile_state],
702
+ api_name=False, queue=False
703
+ )
704
+
705
+ # When CivitAI URL changes (in the enabled area)
706
+ submit_source_civit_enabled.change(
707
+ fn=check_civit_link,
708
+ inputs=[auth_profile_state, submit_source_civit_enabled],
709
+ outputs=[instructions_html, submit_button_single_model, try_again_button, submit_button_single_model],
710
+ api_name=False
711
+ )
712
+
713
+ # When "Try Again" button is clicked
714
+ try_again_button.click(
715
+ fn=check_civit_link,
716
+ inputs=[auth_profile_state, submit_source_civit_enabled],
717
+ outputs=[instructions_html, submit_button_single_model, try_again_button, submit_button_single_model],
718
+ api_name=False
719
+ )
720
 
721
+ # When CivitAI username for bulk input changes
722
+ civit_username_to_bulk.submit( # Use .submit for when user presses Enter or blurs
723
+ fn=list_civit_models,
724
+ inputs=[civit_username_to_bulk],
725
+ outputs=[submit_bulk_civit_urls],
726
+ api_name=False
727
+ )
728
 
729
+ # Single model upload button
730
+ submit_button_single_model.click(
731
+ fn=show_output_area, inputs=[], outputs=[output_markdown_area], api_name=False
732
+ ).then(
733
+ fn=upload_civit_to_hf,
734
+ inputs=[auth_profile_state, gr.OAuthToken(scopes=["write_repository","read_repository"]), submit_source_civit_enabled, link_civit_checkbox_single],
735
+ outputs=[output_markdown_area],
736
+ api_name="upload_single_model"
737
+ )
738
 
739
+ # Bulk model upload button
740
+ bulk_upload_button.click(
741
+ fn=show_output_area, inputs=[], outputs=[output_markdown_area], api_name=False
742
+ ).then(
743
+ fn=bulk_upload,
744
+ inputs=[auth_profile_state, gr.OAuthToken(scopes=["write_repository","read_repository"]), submit_bulk_civit_urls, link_civit_checkbox_bulk],
745
+ outputs=[output_markdown_area],
746
+ api_name="upload_bulk_models"
747
+ )
748
+
749
+ demo.queue(default_concurrency_limit=3, max_size=10) # Adjusted concurrency
750
+ if __name__ == "__main__":
751
+ # For local testing, you might need to set COOKIE_INFO and CIVITAI_API_TOKEN
752
+ # os.environ["COOKIE_INFO"] = "your_civitai_cookie_string_here"
753
+ # os.environ["CIVITAI_API_TOKEN"] = "your_civitai_api_token_here_if_needed"
754
+ demo.launch(debug=True, share=os.environ.get("GRADIO_SHARE") == "true")