Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,651 Bytes
7f21e40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
import torch
import torch.nn.functional as F
from diffusers.utils import load_image, check_min_version
from controlnet_flux import FluxControlNetModel
from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline
import os
import numpy as np
from PIL import Image
import argparse
from diffusers.models.attention_processor import Attention
from dataclasses import dataclass
from typing import Any, List, Dict, Optional, Union, Tuple
import cv2
from transformers import AutoProcessor, pipeline, AutoModelForMaskGeneration
@dataclass
class BoundingBox:
xmin: int
ymin: int
xmax: int
ymax: int
@property
def xyxy(self) -> List[float]:
return [self.xmin, self.ymin, self.xmax, self.ymax]
@dataclass
class DetectionResult:
score: float
label: str
box: BoundingBox
mask: Optional[np.array] = None
@classmethod
def from_dict(cls, detection_dict: Dict) -> 'DetectionResult':
return cls(score=detection_dict['score'],
label=detection_dict['label'],
box=BoundingBox(xmin=detection_dict['box']['xmin'],
ymin=detection_dict['box']['ymin'],
xmax=detection_dict['box']['xmax'],
ymax=detection_dict['box']['ymax']))
def mask_to_polygon(mask: np.ndarray) -> List[List[int]]:
# Find contours in the binary mask
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Find the contour with the largest area
largest_contour = max(contours, key=cv2.contourArea)
# Extract the vertices of the contour
polygon = largest_contour.reshape(-1, 2).tolist()
return polygon
def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray:
"""
Convert a polygon to a segmentation mask.
Args:
- polygon (list): List of (x, y) coordinates representing the vertices of the polygon.
- image_shape (tuple): Shape of the image (height, width) for the mask.
Returns:
- np.ndarray: Segmentation mask with the polygon filled.
"""
# Create an empty mask
mask = np.zeros(image_shape, dtype=np.uint8)
# Convert polygon to an array of points
pts = np.array(polygon, dtype=np.int32)
# Fill the polygon with white color (255)
cv2.fillPoly(mask, [pts], color=(255,))
return mask
def get_boxes(results: DetectionResult) -> List[List[List[float]]]:
boxes = []
for result in results:
xyxy = result.box.xyxy
boxes.append(xyxy)
return [boxes]
def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]:
masks = masks.cpu().float()
masks = masks.permute(0, 2, 3, 1)
masks = masks.mean(axis=-1)
masks = (masks > 0).int()
masks = masks.numpy().astype(np.uint8)
masks = list(masks)
if polygon_refinement:
for idx, mask in enumerate(masks):
shape = mask.shape
polygon = mask_to_polygon(mask)
mask = polygon_to_mask(polygon, shape)
masks[idx] = mask
return masks
def detect(
object_detector,
image: Image.Image,
labels: List[str],
threshold: float = 0.3,
detector_id: Optional[str] = None
) -> List[Dict[str, Any]]:
"""
Use Grounding DINO to detect a set of labels in an image in a zero-shot fashion.
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
detector_id = detector_id if detector_id is not None else "IDEA-Research/grounding-dino-tiny"
# object_detector = detect_pipeline(model=detector_id, task="zero-shot-object-detection", device=device)
labels = [label if label.endswith(".") else label+"." for label in labels]
results = object_detector(image, candidate_labels=labels, threshold=threshold)
results = [DetectionResult.from_dict(result) for result in results]
return results
def segment(
segmentator,
processor,
image: Image.Image,
detection_results: List[Dict[str, Any]],
polygon_refinement: bool = False,
) -> List[DetectionResult]:
"""
Use Segment Anything (SAM) to generate masks given an image + a set of bounding boxes.
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
boxes = get_boxes(detection_results)
inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(device)
outputs = segmentator(**inputs)
masks = processor.post_process_masks(
masks=outputs.pred_masks,
original_sizes=inputs.original_sizes,
reshaped_input_sizes=inputs.reshaped_input_sizes
)[0]
masks = refine_masks(masks, polygon_refinement)
for detection_result, mask in zip(detection_results, masks):
detection_result.mask = mask
return detection_results
def grounded_segmentation(
detect_pipeline,
segmentator,
segment_processor,
image: Union[Image.Image, str],
labels: List[str],
threshold: float = 0.3,
polygon_refinement: bool = False,
detector_id: Optional[str] = None,
segmenter_id: Optional[str] = None
) -> Tuple[np.ndarray, List[DetectionResult]]:
if isinstance(image, str):
image = load_image(image)
detections = detect(detect_pipeline, image, labels, threshold, detector_id)
detections = segment(segmentator, segment_processor, image, detections, polygon_refinement)
return np.array(image), detections
class CustomFluxAttnProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __init__(self, height=44, width=88, attn_enforce=1.0):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.height = height
self.width = width
self.num_pixels = height * width
self.step = 0
self.attn_enforce = attn_enforce
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
image_rotary_emb: Optional[torch.Tensor] = None,
) -> torch.FloatTensor:
self.step += 1
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
# `sample` projections.
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
if encoder_hidden_states is not None:
# `context` projections.
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
batch_size, -1, attn.heads, head_dim
).transpose(1, 2)
if attn.norm_added_q is not None:
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
if attn.norm_added_k is not None:
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
# attention
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
if image_rotary_emb is not None:
from diffusers.models.embeddings import apply_rotary_emb
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
######### attn_enforce
if self.attn_enforce != 1.0:
attn_probs = (torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale).softmax(dim=-1)
img_attn_probs = attn_probs[:, :, -self.num_pixels:, -self.num_pixels:]
img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.height, self.width, self.height, self.width))
img_attn_probs[:, :, :, self.width//2:, :, :self.width//2] *= self.attn_enforce
img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.num_pixels, self.num_pixels))
attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] = img_attn_probs
hidden_states = torch.einsum('bhqk,bhkd->bhqd', attn_probs, value)
else:
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
if encoder_hidden_states is not None:
encoder_hidden_states, hidden_states = (
hidden_states[:, : encoder_hidden_states.shape[1]],
hidden_states[:, encoder_hidden_states.shape[1] :],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
return hidden_states, encoder_hidden_states
else:
return hidden_states
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--attn_enforce', type=float, default=1.3)
parser.add_argument('--ctrl_scale', type=float, default=0.95)
parser.add_argument('--width', type=int, default=768)
parser.add_argument('--height', type=int, default=768)
parser.add_argument('--pixel_offset', type=int, default=8)
parser.add_argument('--input_image_path', type=str, default='./assets/bear_plushie.jpg')
parser.add_argument('--subject_name', type=str, default='bear plushie')
parser.add_argument('--target_prompt', type=str, default='a photo of a bear plushie surfing on the beach')
args = parser.parse_args()
# Build pipeline
controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16)
pipe = FluxControlNetInpaintingPipeline.from_pretrained(
"black-forest-labs/FLUX.1-dev",
controlnet=controlnet,
torch_dtype=torch.bfloat16
).to("cuda")
pipe.transformer.to(torch.bfloat16)
pipe.controlnet.to(torch.bfloat16)
base_attn_procs = pipe.transformer.attn_processors.copy()
detector_id = "IDEA-Research/grounding-dino-tiny"
segmenter_id = "facebook/sam-vit-base"
segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).cuda()
segment_processor = AutoProcessor.from_pretrained(segmenter_id)
object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=torch.device("cuda"))
def segment_image(image, object_name):
image_array, detections = grounded_segmentation(
object_detector,
segmentator,
segment_processor,
image=image,
labels=object_name,
threshold=0.3,
polygon_refinement=True,
)
segment_result = image_array * np.expand_dims(detections[0].mask / 255, axis=-1) + np.ones_like(image_array) * (
1 - np.expand_dims(detections[0].mask / 255, axis=-1)) * 255
segmented_image = Image.fromarray(segment_result.astype(np.uint8))
return segmented_image
def make_diptych(image):
ref_image = np.array(image)
ref_image = np.concatenate([ref_image, np.zeros_like(ref_image)], axis=1)
ref_image = Image.fromarray(ref_image)
return ref_image
# Load image and mask
width = args.width + args.pixel_offset * 2
height = args.height + args.pixel_offset * 2
size = (width*2, height)
subject_name = args.subject_name
base_prompt = f"a photo of {subject_name}"
target_prompt = args.target_prompt
diptych_text_prompt = f"A diptych with two side-by-side images of same {subject_name}. On the left, {base_prompt}. On the right, replicate this {subject_name} exactly but as {target_prompt}"
reference_image = load_image(args.input_image_path).resize((width, height)).convert("RGB")
ctrl_scale=args.ctrl_scale
segmented_image = segment_image(reference_image, subject_name)
mask_image = np.concatenate([np.zeros((height, width, 3)), np.ones((height, width, 3))*255], axis=1)
mask_image = Image.fromarray(mask_image.astype(np.uint8))
diptych_image_prompt = make_diptych(segmented_image)
new_attn_procs = base_attn_procs.copy()
for i, (k, v) in enumerate(new_attn_procs.items()):
new_attn_procs[k] = CustomFluxAttnProcessor2_0(height=height // 16, width=width // 16 * 2, attn_enforce=args.attn_enforce)
pipe.transformer.set_attn_processor(new_attn_procs)
generator = torch.Generator(device="cuda").manual_seed(42)
# Inpaint
result = pipe(
prompt=diptych_text_prompt,
height=size[1],
width=size[0],
control_image=diptych_image_prompt,
control_mask=mask_image,
num_inference_steps=30,
generator=generator,
controlnet_conditioning_scale=ctrl_scale,
guidance_scale=3.5,
negative_prompt="",
true_guidance_scale=3.5
).images[0]
result = result.crop((width, 0, width*2, height))
result = result.crop((args.pixel_offset, args.pixel_offset, width-args.pixel_offset, height-args.pixel_offset))
result.save('result.png')
|