Spaces:
Running
on
Zero
Running
on
Zero
| import comfy.samplers | |
| import comfy.utils | |
| import torch | |
| import numpy as np | |
| from tqdm.auto import trange, tqdm | |
| import math | |
| def sample_lcm_upscale(model, x, sigmas, extra_args=None, callback=None, disable=None, total_upscale=2.0, upscale_method="bislerp", upscale_steps=None): | |
| extra_args = {} if extra_args is None else extra_args | |
| if upscale_steps is None: | |
| upscale_steps = max(len(sigmas) // 2 + 1, 2) | |
| else: | |
| upscale_steps += 1 | |
| upscale_steps = min(upscale_steps, len(sigmas) + 1) | |
| upscales = np.linspace(1.0, total_upscale, upscale_steps)[1:] | |
| orig_shape = x.size() | |
| s_in = x.new_ones([x.shape[0]]) | |
| for i in trange(len(sigmas) - 1, disable=disable): | |
| denoised = model(x, sigmas[i] * s_in, **extra_args) | |
| if callback is not None: | |
| callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
| x = denoised | |
| if i < len(upscales): | |
| x = comfy.utils.common_upscale(x, round(orig_shape[-1] * upscales[i]), round(orig_shape[-2] * upscales[i]), upscale_method, "disabled") | |
| if sigmas[i + 1] > 0: | |
| x += sigmas[i + 1] * torch.randn_like(x) | |
| return x | |
| class SamplerLCMUpscale: | |
| upscale_methods = ["bislerp", "nearest-exact", "bilinear", "area", "bicubic"] | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| {"scale_ratio": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 20.0, "step": 0.01}), | |
| "scale_steps": ("INT", {"default": -1, "min": -1, "max": 1000, "step": 1}), | |
| "upscale_method": (s.upscale_methods,), | |
| } | |
| } | |
| RETURN_TYPES = ("SAMPLER",) | |
| CATEGORY = "sampling/custom_sampling/samplers" | |
| FUNCTION = "get_sampler" | |
| def get_sampler(self, scale_ratio, scale_steps, upscale_method): | |
| if scale_steps < 0: | |
| scale_steps = None | |
| sampler = comfy.samplers.KSAMPLER(sample_lcm_upscale, extra_options={"total_upscale": scale_ratio, "upscale_steps": scale_steps, "upscale_method": upscale_method}) | |
| return (sampler, ) | |
| from comfy.k_diffusion.sampling import to_d | |
| import comfy.model_patcher | |
| def sample_euler_pp(model, x, sigmas, extra_args=None, callback=None, disable=None): | |
| extra_args = {} if extra_args is None else extra_args | |
| temp = [0] | |
| def post_cfg_function(args): | |
| temp[0] = args["uncond_denoised"] | |
| return args["denoised"] | |
| model_options = extra_args.get("model_options", {}).copy() | |
| extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True) | |
| s_in = x.new_ones([x.shape[0]]) | |
| for i in trange(len(sigmas) - 1, disable=disable): | |
| sigma_hat = sigmas[i] | |
| denoised = model(x, sigma_hat * s_in, **extra_args) | |
| d = to_d(x - denoised + temp[0], sigmas[i], denoised) | |
| if callback is not None: | |
| callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigma_hat, 'denoised': denoised}) | |
| dt = sigmas[i + 1] - sigma_hat | |
| x = x + d * dt | |
| return x | |
| class SamplerEulerCFGpp: | |
| def INPUT_TYPES(s): | |
| return {"required": | |
| {"version": (["regular", "alternative"],),} | |
| } | |
| RETURN_TYPES = ("SAMPLER",) | |
| # CATEGORY = "sampling/custom_sampling/samplers" | |
| CATEGORY = "_for_testing" | |
| FUNCTION = "get_sampler" | |
| def get_sampler(self, version): | |
| if version == "alternative": | |
| sampler = comfy.samplers.KSAMPLER(sample_euler_pp) | |
| else: | |
| sampler = comfy.samplers.ksampler("euler_cfg_pp") | |
| return (sampler, ) | |
| NODE_CLASS_MAPPINGS = { | |
| "SamplerLCMUpscale": SamplerLCMUpscale, | |
| "SamplerEulerCFGpp": SamplerEulerCFGpp, | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "SamplerEulerCFGpp": "SamplerEulerCFG++", | |
| } | |