gradio-on-cog / app.py
multimodalart's picture
Update app.py
0cd0e7d verified
raw
history blame
6.93 kB
import gradio as gr
import requests
import json
import io
import os
import uuid
from PIL import Image
import base64
from prance import ResolvingParser
SCHEMA_URL = "http://localhost:5000/openapi.json"
FILENAME = "openapi.json"
schema_response = requests.get(SCHEMA_URL)
openapi_spec = schema_response
r = requests.get(SCHEMA_URL)
print(r.content)
with open(FILENAME, "wb") as f:
f.write(r.content)
parser = ResolvingParser(FILENAME)
api_spec = parser.specification
print(parser.specification)
def extract_property_info(prop):
combined_prop = {}
merge_keywords = ["allOf", "anyOf", "oneOf"]
for keyword in merge_keywords:
if keyword in prop:
for subprop in prop[keyword]:
combined_prop.update(subprop)
del prop[keyword]
if not combined_prop:
combined_prop = prop.copy()
for key in ['description', 'default']:
if key in prop:
combined_prop[key] = prop[key]
return combined_prop
def sort_properties_by_order(properties):
ordered_properties = sorted(properties.items(), key=lambda x: x[1].get('x-order', float('inf')))
return ordered_properties
def parse_outputs(data):
values = []
if isinstance(data, dict):
# Handle case where data is an object
dict_values = []
for value in data.values():
extracted_values = parse_outputs(value)
# For dict, we append instead of extend to maintain list structure within objects
if isinstance(value, list):
dict_values += [extracted_values]
else:
dict_values += extracted_values
return dict_values
elif isinstance(data, list):
# Handle case where data is an array
list_values = []
for item in data:
# Here we extend to flatten the list since we're already in an array context
list_values += parse_outputs(item)
return list_values
else:
# Handle primitive data types directly
return [data]
def create_gradio_app(api_spec, api_url):
inputs = []
outputs = []
input_schema = api_spec["components"]["schemas"]["Input"]["properties"]
output_schema = api_spec["components"]["schemas"]["Output"]
ordered_input_schema = sort_properties_by_order(input_schema)
names = []
for name, prop in ordered_input_schema:
prop = extract_property_info(prop)
if "enum" in prop:
input_field = gr.Dropdown(
choices=prop["enum"], label=prop.get("title"), info=prop.get("description"), value=prop.get("default")
)
elif prop["type"] == "integer":
if prop.get("minimum") and prop.get("maximum"):
input_field = gr.Slider(
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
minimum=prop.get("minimum"), maximum=prop.get("maximum"), step=1,
)
else:
input_field = gr.Number(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
elif prop["type"] == "number":
if prop.get("minimum") and prop.get("maximum"):
input_field = gr.Slider(
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
minimum=prop.get("minimum"), maximum=prop.get("maximum"),
)
else:
input_field = gr.Number(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
elif prop["type"] == "boolean":
input_field = gr.Checkbox(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
elif prop["type"] == "string" and prop.get("format") == "uri":
input_field = gr.File(label=prop.get("title"))
else:
input_field = gr.Textbox(label=prop.get("title"), info=prop.get("description"))
inputs.append(input_field)
names.append(name)
print(names)
data_field = gr.State(value=names)
inputs.append(data_field)
print(output_schema)
outputs.append(gr.Image(label=output_schema["title"], visible=True))
outputs.append(gr.Audio(label=output_schema["title"], visible=False))
outputs.append(gr.Textbox(label=output_schema["title"], visible=False))
outputs.append(data_field)
#else if there's multiple outputs
def predict(*args):
print(args)
keys = args[-1]
payload = {"input": {}}
for i, key in enumerate(keys):
value = args[i]
if value and (os.path.exists(str(value))):
value = "http://localhost:7860/file=" + value
payload["input"][key] = value
print(payload)
response = requests.post(api_url, headers={"Content-Type": "application/json"}, json=payload)
print(response)
if response.status_code == 200:
json_response = response.json()
print(json_response)
if "status" in json_response and json_response["status"] == "failed":
raise gr.Error("Failed to generate output")
print(json_response["output"])
outputs = parse_outputs(json_response["output"])
print(outputs)
for output in outputs:
if not output:
continue
if output.startswith("data:image"):
# Process as image
base64_data = output.split(",", 1)[1]
image_data = base64.b64decode(base64_data)
image_stream = io.BytesIO(image_data)
image = Image.open(image_stream)
return gr.update(visible=True, value=image), gr.update(visible=False), gr.update(visible=False), keys
elif output.startswith("data:audio"):
base64_data = output.split(",", 1)[1]
audio_data = base64.b64decode(base64_data)
audio_stream = io.BytesIO(audio_data)
# Here you can save the audio or return the stream for further processing
filename = f"{uuid.uuid4()}.wav" # Change format as needed
with open(filename, "wb") as audio_file:
audio_file.write(audio_stream.getbuffer())
return gr.update(visible=False), gr.update(visible=True, value=filename), gr.update(visible=False), keys
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True, value=output)
else:
raise gr.Error("The submission failed!")
return gr.Interface(fn=predict, inputs=inputs, outputs=outputs)
API_URL = "http://localhost:5000/predictions"
app = create_gradio_app(api_spec, API_URL)
app.launch(share=True)