gradio-on-cog / app.py
multimodalart's picture
Update app.py
38a61be verified
raw
history blame
5.4 kB
import gradio as gr
import requests
import json
import io
import os
import uuid
from PIL import Image
import base64
from prance import ResolvingParser
SCHEMA_URL = "http://localhost:5000/openapi.json"
FILENAME = "openapi.json"
schema_response = requests.get(SCHEMA_URL)
openapi_spec = schema_response
r = requests.get(SCHEMA_URL)
print(r.content)
with open(FILENAME, "wb") as f:
f.write(r.content)
parser = ResolvingParser(FILENAME)
api_spec = parser.specification
print(parser.specification)
def extract_property_info(prop):
combined_prop = {}
merge_keywords = ["allOf", "anyOf", "oneOf"]
for keyword in merge_keywords:
if keyword in prop:
for subprop in prop[keyword]:
combined_prop.update(subprop)
del prop[keyword]
if not combined_prop:
combined_prop = prop.copy()
for key in ['description', 'default']:
if key in prop:
combined_prop[key] = prop[key]
return combined_prop
def sort_properties_by_order(properties):
ordered_properties = sorted(properties.items(), key=lambda x: x[1].get('x-order', float('inf')))
return ordered_properties
def create_gradio_app(api_spec, api_url):
inputs = []
outputs = []
input_schema = api_spec["components"]["schemas"]["Input"]["properties"]
output_schema = api_spec["components"]["schemas"]["Output"]
ordered_input_schema = sort_properties_by_order(input_schema)
names = []
for name, prop in ordered_input_schema:
prop = extract_property_info(prop)
if "enum" in prop:
input_field = gr.Dropdown(
choices=prop["enum"], label=prop.get("title"), info=prop.get("description"), value=prop.get("default")
)
elif prop["type"] == "integer":
input_field = gr.Slider(
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
minimum=prop.get("minimum"), maximum=prop.get("maximum"), step=1,
)
elif prop["type"] == "number":
input_field = gr.Slider(
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
minimum=prop.get("minimum"), maximum=prop.get("maximum"),
)
elif prop["type"] == "boolean":
input_field = gr.Checkbox(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
elif prop["type"] == "string" and prop.get("format") == "uri":
input_field = gr.File(label=prop.get("title"))
else:
input_field = gr.Textbox(label=prop.get("title"), info=prop.get("description"))
inputs.append(input_field)
names.append(name)
print(names)
data_field = gr.State(value=names)
inputs.append(data_field)
print(output_schema)
outputs.append(gr.Image(label=output_schema["title"], visible=True))
outputs.append(gr.Audio(label=output_schema["title"], visible=False))
outputs.append(gr.Textbox(label=output_schema["title"], visible=False))
outputs.append(data_field)
#else if there's multiple outputs
def predict(*args):
print(args)
keys = args[-1]
payload = {"input": {}}
for i, key in enumerate(keys):
value = args[i]
if value and (os.path.exists(str(value))):
value = "http://localhost:7860/file=" + value
payload["input"][key] = value
print(payload)
response = requests.post(api_url, headers={"Content-Type": "application/json"}, json=payload)
print(response)
if response.status_code == 200:
json_response = response.json()
print(json_response)
if "status" in json_response and json_response["status"] == "failed":
raise gr.Error("Failed to generate output")
output_images = []
for output_uri in json_response["output"]:
if output_uri.startswith("data:image"):
# Process as image
base64_data = output_uri.split(",", 1)[1]
image_data = base64.b64decode(base64_data)
image_stream = io.BytesIO(image_data)
image = Image.open(image_stream)
return gr.update(visible=True, value=image), gr.update(visible=False), gr.update(visible=False), keys
elif output_uri.startswith("data:audio"):
# Process as audio
base64_data = output_uri.split(",", 1)[1]
audio_data = base64.b64decode(base64_data)
audio_stream = io.BytesIO(audio_data)
# Here you can save the audio or return the stream for further processing
filename = f"{uuid.uuid4()}.wav" # Change format as needed
with open(filename, "wb") as audio_file:
audio_file.write(audio_stream.getbuffer())
return gr.update(visible=False), gr.update(visible=True, value=filename), gr.update(visible=False), keys
else:
raise gr.Error("The submission failed!")
return gr.Interface(fn=predict, inputs=inputs, outputs=outputs)
API_URL = "http://localhost:5000/predictions"
app = create_gradio_app(api_spec, API_URL)
app.launch(share=True)