gradio-on-cog / app.py
multimodalart's picture
Update app.py
7e2f313 verified
raw
history blame
5.16 kB
import gradio as gr
import requests
import json
import io
import os
from PIL import Image
import base64
from prance import ResolvingParser
SCHEMA_URL = "http://localhost:5000/openapi.json"
FILENAME = "openapi.json"
schema_response = requests.get(SCHEMA_URL)
openapi_spec = schema_response
r = requests.get(SCHEMA_URL)
print(r.content)
with open(FILENAME, "wb") as f:
f.write(r.content)
parser = ResolvingParser(FILENAME)
api_spec = parser.specification
print(parser.specification)
def extract_property_info(prop):
combined_prop = {}
merge_keywords = ["allOf", "anyOf", "oneOf"]
for keyword in merge_keywords:
if keyword in prop:
for subprop in prop[keyword]:
combined_prop.update(subprop)
del prop[keyword]
if not combined_prop:
combined_prop = prop.copy()
for key in ['description', 'default']:
if key in prop:
combined_prop[key] = prop[key]
return combined_prop
def sort_properties_by_order(properties):
ordered_properties = sorted(properties.items(), key=lambda x: x[1].get('x-order', float('inf')))
return ordered_properties
def create_gradio_app(api_spec, api_url):
inputs = []
outputs = []
input_schema = api_spec["components"]["schemas"]["Input"]["properties"]
output_schema = api_spec["components"]["schemas"]["Output"]
ordered_input_schema = sort_properties_by_order(input_schema)
names = []
for name, prop in ordered_input_schema:
prop = extract_property_info(prop)
if "enum" in prop:
input_field = gr.Dropdown(
choices=prop["enum"], label=prop.get("title"), info=prop.get("description"), value=prop.get("default")
)
elif prop["type"] == "integer":
input_field = gr.Slider(
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
minimum=prop.get("minimum"), maximum=prop.get("maximum"), step=1,
)
elif prop["type"] == "number":
input_field = gr.Slider(
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
minimum=prop.get("minimum"), maximum=prop.get("maximum"),
)
elif prop["type"] == "boolean":
input_field = gr.Checkbox(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
elif prop["type"] == "string" and prop.get("format") == "uri":
input_field = gr.File(label=prop.get("title"))
else:
input_field = gr.Textbox(label=prop.get("title"), info=prop.get("description"))
inputs.append(input_field)
names.append(name)
print(names)
data_field = gr.State(value=names)
inputs.append(data_field)
print(output_schema)
if output_schema["type"] == "string":
if "format" in output_schema:
if(output_schema["format"] == "uri"):
output_component = gr.Image(label=output_schema["title"])
else:
output_component = gr.Textbox(label="Output")
else:
output_component = gr.Textbox(label="Output")
outputs.append(output_component)
elif output_schema["type"] == "array":
if "format" in output_schema["items"]:
if(output_schema["items"]["format"] == "uri"):
output_component = gr.Image(label=output_schema["title"])
else:
output_component = gr.Textbox(label=output_schema["title"])
else:
output_component = gr.Textbox(label=output_schema["title"])
outputs.append(output_component)
outputs.append(data_field)
#else if there's multiple outputs
def predict(*args):
print(args)
keys = args[-1]
payload = {"input": {}}
for i, key in enumerate(keys):
value = args[i]
if value and (os.path.exists(str(value))):
value = "http://localhost:7860/file=" + value
payload["input"][key] = value
print(payload)
response = requests.post(api_url, headers={"Content-Type": "application/json"}, json=payload)
print(response)
if response.status_code == 200:
json_response = response.json()
print(json_response)
if "status" in json_response and json_response["status"] == "failed":
raise gr.Error("Failed to generate image")
output_images = []
for output_uri in json_response["output"]:
base64_image = output_uri.replace("data:image/png;base64,", "")
image_data = base64.b64decode(base64_image)
image_stream = io.BytesIO(image_data)
output_images.append(Image.open(image_stream))
return output_images[0], keys
else:
raise gr.Error("The submission failed!")
return gr.Interface(fn=predict, inputs=inputs, outputs=outputs if outputs else "textbox")
API_URL = "http://localhost:5000/predictions"
app = create_gradio_app(api_spec, API_URL)
app.launch(share=True)