Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,96 +22,80 @@ api_spec = parser.specification
|
|
22 |
print(parser.specification)
|
23 |
|
24 |
def extract_property_info(prop):
|
25 |
-
# Initialize a dictionary to hold the combined properties
|
26 |
combined_prop = {}
|
27 |
-
|
28 |
-
# Identify the keywords to process. Extend this list if needed.
|
29 |
merge_keywords = ["allOf", "anyOf", "oneOf"]
|
30 |
|
31 |
-
# Loop through each keyword to check if it exists in the prop
|
32 |
for keyword in merge_keywords:
|
33 |
if keyword in prop:
|
34 |
for subprop in prop[keyword]:
|
35 |
combined_prop.update(subprop)
|
36 |
-
# After merging, remove the keyword to avoid confusion
|
37 |
del prop[keyword]
|
38 |
|
39 |
-
# If no merge_keywords were found, copy the original property
|
40 |
if not combined_prop:
|
41 |
combined_prop = prop.copy()
|
42 |
|
43 |
-
# Preserve specific properties defined outside of merge_keywords,
|
44 |
-
# like 'description' and 'default', by updating them in combined_prop
|
45 |
for key in ['description', 'default']:
|
46 |
if key in prop:
|
47 |
combined_prop[key] = prop[key]
|
48 |
|
49 |
-
# This returns the combined property with preserved 'description' and 'default' values.
|
50 |
return combined_prop
|
51 |
|
|
|
|
|
|
|
|
|
52 |
def create_gradio_app(api_spec, api_url):
|
53 |
inputs = []
|
|
|
54 |
input_schema = api_spec["components"]["schemas"]["Input"]["properties"]
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
#print(prop)
|
58 |
-
prop = extract_property_info(
|
59 |
-
prop
|
60 |
-
) # Extract property info correctly for 'allOf'
|
61 |
-
print(prop)
|
62 |
if "enum" in prop:
|
63 |
input_field = gr.Dropdown(
|
64 |
choices=prop["enum"], label=prop.get("title"), info=prop.get("description"), value=prop.get("default")
|
65 |
)
|
66 |
elif prop["type"] == "integer":
|
67 |
input_field = gr.Slider(
|
68 |
-
label=prop.get("title"),
|
69 |
-
|
70 |
-
value=prop.get("default"),
|
71 |
-
minimum=prop.get("minimum"),
|
72 |
-
maximum=prop.get("maximum"),
|
73 |
-
step=1,
|
74 |
)
|
75 |
elif prop["type"] == "number":
|
76 |
input_field = gr.Slider(
|
77 |
-
label=prop.get("title"),
|
78 |
-
|
79 |
-
value=prop.get("default"),
|
80 |
-
minimum=prop.get("minimum"),
|
81 |
-
maximum=prop.get("maximum"),
|
82 |
)
|
83 |
elif prop["type"] == "boolean":
|
84 |
-
input_field = gr.Checkbox(
|
85 |
-
label=prop.get("title"),
|
86 |
-
info=prop.get("description"),
|
87 |
-
value=prop.get("default")
|
88 |
-
)
|
89 |
elif prop["type"] == "string" and prop.get("format") == "uri":
|
90 |
-
input_field = gr.File(
|
91 |
-
|
92 |
-
)
|
93 |
-
else: # Assuming string type for simplicity, can add more types as needed
|
94 |
-
input_field = gr.Textbox(
|
95 |
-
label=prop.get("title"),
|
96 |
-
info=prop.get("description"),
|
97 |
-
)
|
98 |
inputs.append(input_field)
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
payload = {"input": {}}
|
102 |
-
for
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
value.seek(0)
|
107 |
-
value = (
|
108 |
-
"data:image/jpeg;base64," + base64.b64encode(value.read()).decode()
|
109 |
-
)
|
110 |
payload["input"][key] = value
|
111 |
-
|
112 |
-
response = requests.post(
|
113 |
-
api_url, headers={"Content-Type": "application/json"}, json=payload
|
114 |
-
)
|
115 |
json_response = response.json()
|
116 |
|
117 |
if "status" in json_response and json_response["status"] == "failed":
|
@@ -126,10 +110,9 @@ def create_gradio_app(api_spec, api_url):
|
|
126 |
|
127 |
return output_images
|
128 |
|
129 |
-
|
130 |
-
return gr.Interface(fn=predict, inputs=inputs, outputs=output_component)
|
131 |
|
132 |
|
133 |
API_URL = "http://localhost:5000/predictions"
|
134 |
app = create_gradio_app(api_spec, API_URL)
|
135 |
-
app.launch()
|
|
|
22 |
print(parser.specification)
|
23 |
|
24 |
def extract_property_info(prop):
|
|
|
25 |
combined_prop = {}
|
|
|
|
|
26 |
merge_keywords = ["allOf", "anyOf", "oneOf"]
|
27 |
|
|
|
28 |
for keyword in merge_keywords:
|
29 |
if keyword in prop:
|
30 |
for subprop in prop[keyword]:
|
31 |
combined_prop.update(subprop)
|
|
|
32 |
del prop[keyword]
|
33 |
|
|
|
34 |
if not combined_prop:
|
35 |
combined_prop = prop.copy()
|
36 |
|
|
|
|
|
37 |
for key in ['description', 'default']:
|
38 |
if key in prop:
|
39 |
combined_prop[key] = prop[key]
|
40 |
|
|
|
41 |
return combined_prop
|
42 |
|
43 |
+
def sort_properties_by_order(properties):
|
44 |
+
ordered_properties = sorted(properties.items(), key=lambda x: x[1].get('x-order', float('inf')))
|
45 |
+
return ordered_properties
|
46 |
+
|
47 |
def create_gradio_app(api_spec, api_url):
|
48 |
inputs = []
|
49 |
+
outputs = []
|
50 |
input_schema = api_spec["components"]["schemas"]["Input"]["properties"]
|
51 |
+
output_schema = api_spec["components"]["schemas"]["Output"]
|
52 |
+
ordered_input_schema = sort_properties_by_order(input_schema)
|
53 |
+
names = []
|
54 |
+
for name, prop in ordered_input_schema:
|
55 |
|
56 |
+
prop = extract_property_info(prop)
|
|
|
|
|
|
|
|
|
|
|
57 |
if "enum" in prop:
|
58 |
input_field = gr.Dropdown(
|
59 |
choices=prop["enum"], label=prop.get("title"), info=prop.get("description"), value=prop.get("default")
|
60 |
)
|
61 |
elif prop["type"] == "integer":
|
62 |
input_field = gr.Slider(
|
63 |
+
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
|
64 |
+
minimum=prop.get("minimum"), maximum=prop.get("maximum"), step=1,
|
|
|
|
|
|
|
|
|
65 |
)
|
66 |
elif prop["type"] == "number":
|
67 |
input_field = gr.Slider(
|
68 |
+
label=prop.get("title"), info=prop.get("description"), value=prop.get("default"),
|
69 |
+
minimum=prop.get("minimum"), maximum=prop.get("maximum"),
|
|
|
|
|
|
|
70 |
)
|
71 |
elif prop["type"] == "boolean":
|
72 |
+
input_field = gr.Checkbox(label=prop.get("title"), info=prop.get("description"), value=prop.get("default"))
|
|
|
|
|
|
|
|
|
73 |
elif prop["type"] == "string" and prop.get("format") == "uri":
|
74 |
+
input_field = gr.File(label=prop.get("title"))
|
75 |
+
else:
|
76 |
+
input_field = gr.Textbox(label=prop.get("title"), info=prop.get("description"))
|
|
|
|
|
|
|
|
|
|
|
77 |
inputs.append(input_field)
|
78 |
+
names.append(name)
|
79 |
+
print(names)
|
80 |
+
data_field = gr.State(value=names)
|
81 |
+
inputs.append(data_field)
|
82 |
+
if output_schema["type"] == "string":
|
83 |
+
output_component = gr.Gallery(label="Output Image")
|
84 |
+
outputs.append(output_component)
|
85 |
+
outputs.append(data_field)
|
86 |
+
#else if there's multiple outputs
|
87 |
+
|
88 |
+
def predict(*args):
|
89 |
+
print(args)
|
90 |
+
keys = args[-1]
|
91 |
payload = {"input": {}}
|
92 |
+
for i, key in enumerate(keys):
|
93 |
+
value = args[i]
|
94 |
+
if(os.path.exists(value)):
|
95 |
+
value = "http://localhost:7860/file=" + value
|
|
|
|
|
|
|
|
|
96 |
payload["input"][key] = value
|
97 |
+
print(payload)
|
98 |
+
response = requests.post(api_url, headers={"Content-Type": "application/json"}, json=payload)
|
|
|
|
|
99 |
json_response = response.json()
|
100 |
|
101 |
if "status" in json_response and json_response["status"] == "failed":
|
|
|
110 |
|
111 |
return output_images
|
112 |
|
113 |
+
return gr.Interface(fn=predict, inputs=inputs, outputs=outputs if outputs else "label")
|
|
|
114 |
|
115 |
|
116 |
API_URL = "http://localhost:5000/predictions"
|
117 |
app = create_gradio_app(api_spec, API_URL)
|
118 |
+
app.launch(share=True)
|