Spaces:
Sleeping
Sleeping
all toghether
Browse files- Dockerfile +20 -1
- app.py +190 -0
- requirements.txt +2 -0
- run.sh +2 -0
Dockerfile
CHANGED
@@ -5,4 +5,23 @@ RUN chown -R user:user /root/
|
|
5 |
|
6 |
USER user
|
7 |
ENV HOME=/home/user \
|
8 |
-
PATH=/home/user/.local/bin:$PATH
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
USER user
|
7 |
ENV HOME=/home/user \
|
8 |
+
PATH=/home/user/.local/bin:$PATH \
|
9 |
+
PYTHONPATH=$HOME/app \
|
10 |
+
PYTHONUNBUFFERED=1 \
|
11 |
+
GRADIO_ALLOW_FLAGGING=never \
|
12 |
+
GRADIO_NUM_PORTS=1 \
|
13 |
+
GRADIO_SERVER_NAME=0.0.0.0 \
|
14 |
+
GRADIO_THEME=huggingface \
|
15 |
+
SYSTEM=spaces
|
16 |
+
|
17 |
+
WORKDIR $HOME/app
|
18 |
+
COPY ./requirements.txt /code/requirements.txt
|
19 |
+
|
20 |
+
# create virtual env for Gradio app
|
21 |
+
RUN python -m venv $HOME/.venv && \
|
22 |
+
. $HOME/.venv/bin/activate && \
|
23 |
+
pip install --no-cache-dir --upgrade pip && \
|
24 |
+
pip install --no-cache-dir -r /code/requirements.txt
|
25 |
+
|
26 |
+
COPY --chown=user . $HOME/app
|
27 |
+
CMD ["sh", "run.sh"]
|
app.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
import base64
|
6 |
+
import numpy as np
|
7 |
+
import random
|
8 |
+
import io
|
9 |
+
|
10 |
+
URL = "http://localhost:5000/predictions"
|
11 |
+
HEADERS = {
|
12 |
+
"Content-Type": "application/json",
|
13 |
+
}
|
14 |
+
|
15 |
+
MAX_SEED = np.iinfo(np.int32).max
|
16 |
+
|
17 |
+
|
18 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
19 |
+
if randomize_seed:
|
20 |
+
seed = random.randint(0, MAX_SEED)
|
21 |
+
return seed
|
22 |
+
|
23 |
+
|
24 |
+
def generate(
|
25 |
+
prompt: str,
|
26 |
+
negative_prompt: str = "",
|
27 |
+
seed: int = 0,
|
28 |
+
width: int = 1024,
|
29 |
+
height: int = 1024,
|
30 |
+
prior_num_inference_steps: int = 30,
|
31 |
+
# prior_timesteps: List[float] = None,
|
32 |
+
prior_guidance_scale: float = 4.0,
|
33 |
+
decoder_num_inference_steps: int = 12,
|
34 |
+
# decoder_timesteps: List[float] = None,
|
35 |
+
decoder_guidance_scale: float = 0.0,
|
36 |
+
num_images_per_prompt: int = 2,
|
37 |
+
|
38 |
+
) -> Image:
|
39 |
+
payload = {
|
40 |
+
"input": {
|
41 |
+
"hdr": 0,
|
42 |
+
"image": "https://replicate.delivery/pbxt/KA9yP9n3ZX5A5mkoPz3gsPzKTH1NA7LqVkQRTg7Sov46lOfo/0_1.webp",
|
43 |
+
"steps": 20,
|
44 |
+
"prompt": "UHD 4k vogue, a woman resting in a magic pool, face above the surface of the water, red freckles",
|
45 |
+
"scheduler": "DDIM",
|
46 |
+
"creativity": 0.25,
|
47 |
+
"guess_mode": False,
|
48 |
+
"resolution": "original",
|
49 |
+
"resemblance": 0.75,
|
50 |
+
"guidance_scale": 7,
|
51 |
+
"negative_prompt": "teeth, tooth, open mouth, longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, mutant"
|
52 |
+
}
|
53 |
+
}
|
54 |
+
response = requests.post(URL, headers=HEADERS, json=payload)
|
55 |
+
json_response = response.json()
|
56 |
+
if 'output' in json_response:
|
57 |
+
base64_image = json_response["output"][0]
|
58 |
+
image_data = base64.b64decode(
|
59 |
+
base64_image.replace("data:image/png;base64,", ""))
|
60 |
+
image_stream = io.BytesIO(image_data)
|
61 |
+
return Image.open(image_stream)
|
62 |
+
raise gr.Error(json_response["status"])
|
63 |
+
|
64 |
+
|
65 |
+
examples = [
|
66 |
+
"An astronaut riding a green horse",
|
67 |
+
"A mecha robot in a favela by Tarsila do Amaral",
|
68 |
+
"The sprirt of a Tamagotchi wandering in the city of Los Angeles",
|
69 |
+
"A delicious feijoada ramen dish"
|
70 |
+
]
|
71 |
+
|
72 |
+
with gr.Blocks() as demo:
|
73 |
+
with gr.Group():
|
74 |
+
with gr.Row():
|
75 |
+
prompt = gr.Text(
|
76 |
+
label="Prompt",
|
77 |
+
show_label=False,
|
78 |
+
max_lines=1,
|
79 |
+
placeholder="Enter your prompt",
|
80 |
+
container=False,
|
81 |
+
)
|
82 |
+
run_button = gr.Button("Run", scale=0)
|
83 |
+
result = gr.Image(label="Result", show_label=False)
|
84 |
+
with gr.Accordion("Advanced options", open=False):
|
85 |
+
negative_prompt = gr.Text(
|
86 |
+
label="Negative prompt",
|
87 |
+
max_lines=1,
|
88 |
+
placeholder="Enter a Negative Prompt",
|
89 |
+
)
|
90 |
+
|
91 |
+
seed = gr.Slider(
|
92 |
+
label="Seed",
|
93 |
+
minimum=0,
|
94 |
+
maximum=MAX_SEED,
|
95 |
+
step=1,
|
96 |
+
value=0,
|
97 |
+
)
|
98 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
99 |
+
with gr.Row():
|
100 |
+
width = gr.Slider(
|
101 |
+
label="Width",
|
102 |
+
minimum=1024,
|
103 |
+
maximum=1024,
|
104 |
+
step=512,
|
105 |
+
value=1024,
|
106 |
+
)
|
107 |
+
height = gr.Slider(
|
108 |
+
label="Height",
|
109 |
+
minimum=1024,
|
110 |
+
maximum=1024,
|
111 |
+
step=512,
|
112 |
+
value=1024,
|
113 |
+
)
|
114 |
+
num_images_per_prompt = gr.Slider(
|
115 |
+
label="Number of Images",
|
116 |
+
minimum=1,
|
117 |
+
maximum=2,
|
118 |
+
step=1,
|
119 |
+
value=1,
|
120 |
+
)
|
121 |
+
with gr.Row():
|
122 |
+
prior_guidance_scale = gr.Slider(
|
123 |
+
label="Prior Guidance Scale",
|
124 |
+
minimum=0,
|
125 |
+
maximum=20,
|
126 |
+
step=0.1,
|
127 |
+
value=4.0,
|
128 |
+
)
|
129 |
+
prior_num_inference_steps = gr.Slider(
|
130 |
+
label="Prior Inference Steps",
|
131 |
+
minimum=10,
|
132 |
+
maximum=30,
|
133 |
+
step=1,
|
134 |
+
value=20,
|
135 |
+
)
|
136 |
+
|
137 |
+
decoder_guidance_scale = gr.Slider(
|
138 |
+
label="Decoder Guidance Scale",
|
139 |
+
minimum=0,
|
140 |
+
maximum=0,
|
141 |
+
step=0.1,
|
142 |
+
value=0.0,
|
143 |
+
)
|
144 |
+
decoder_num_inference_steps = gr.Slider(
|
145 |
+
label="Decoder Inference Steps",
|
146 |
+
minimum=4,
|
147 |
+
maximum=12,
|
148 |
+
step=1,
|
149 |
+
value=10,
|
150 |
+
)
|
151 |
+
|
152 |
+
gr.Examples(
|
153 |
+
examples=examples,
|
154 |
+
inputs=prompt,
|
155 |
+
outputs=result,
|
156 |
+
fn=generate,
|
157 |
+
cache_examples=False,
|
158 |
+
)
|
159 |
+
|
160 |
+
inputs = [
|
161 |
+
prompt,
|
162 |
+
negative_prompt,
|
163 |
+
seed,
|
164 |
+
width,
|
165 |
+
height,
|
166 |
+
prior_num_inference_steps,
|
167 |
+
# prior_timesteps,
|
168 |
+
prior_guidance_scale,
|
169 |
+
decoder_num_inference_steps,
|
170 |
+
# decoder_timesteps,
|
171 |
+
decoder_guidance_scale,
|
172 |
+
num_images_per_prompt,
|
173 |
+
]
|
174 |
+
gr.on(
|
175 |
+
triggers=[prompt.submit, negative_prompt.submit, run_button.click],
|
176 |
+
fn=randomize_seed_fn,
|
177 |
+
inputs=[seed, randomize_seed],
|
178 |
+
outputs=seed,
|
179 |
+
queue=False,
|
180 |
+
api_name=False,
|
181 |
+
).then(
|
182 |
+
fn=generate,
|
183 |
+
inputs=inputs,
|
184 |
+
outputs=result,
|
185 |
+
api_name="run",
|
186 |
+
)
|
187 |
+
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
demo.queue(max_size=20).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
gradio==4.18.0
|
2 |
+
replicate==0.23.1
|
run.sh
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
cd /src && python3 -m cog.server.http --threads=10 &
|
2 |
+
cd $HOME/app && . $HOME/.venv/bin/activate && python app.py
|