Spaces:
Runtime error
Runtime error
from turtle import width | |
import gradio as gr | |
import random | |
import os | |
import io, base64 | |
from PIL import Image | |
import numpy | |
import shortuuid | |
latent = gr.Interface.load("spaces/multimodalart/latentdiffusion") | |
rudalle = gr.Interface.load("spaces/multimodalart/rudalle") | |
#print(rudalle) | |
#guided = gr.Interface.load("spaces/EleutherAI/clip-guided-diffusion") | |
#print(guided) | |
def text2image_latent(text,steps,width,height,images,diversity): | |
results = latent(text, steps, width, height, images, diversity) | |
image_paths = [] | |
image_arrays = [] | |
for image in results[1]: | |
image_str = image[0] | |
image_str = image_str.replace("data:image/png;base64,","") | |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8")) | |
img = Image.open(io.BytesIO(decoded_bytes)) | |
image_arrays.append(numpy.asarray(img)) | |
#url = shortuuid.uuid() | |
#temp_dir = './tmp' | |
#if not os.path.exists(temp_dir): | |
# os.makedirs(temp_dir, exist_ok=True) | |
#image_path = f'{temp_dir}/{url}.png' | |
#img.save(f'{temp_dir}/{url}.png') | |
#image_paths.append(image_path) | |
return(results[0],image_arrays) | |
def text2image_rudalle(text,aspect,model): | |
image = rudalle(text,aspect,model)[0] | |
return(image) | |
#def text2image_guided(text): | |
# image = guided(text, None, 10, 600, 0, 0, 0, random.randint(0,2147483647), None, 50, 32) | |
# print(image) | |
# image = image[0] | |
# return(image) | |
css_mt = {"margin-top": "1em"} | |
empty = gr.outputs.HTML() | |
with gr.Blocks() as mindseye: | |
gr.Markdown("# MindsEye Lite") | |
gr.Markdown("### Run multiple text-to-image models in one place") | |
gr.Markdown("<style>.mx-auto.container .gr-form-gap {flex-direction: row; gap: calc(1rem * calc(1 - var(--tw-space-y-reverse)));} .mx-auto.container .gr-form-gap .flex-col, .mx-auto.container .gr-form-gap .gr-box{width: 100%}</style>") | |
text = gr.inputs.Textbox(placeholder="Try writing something..", label="Prompt") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Tabs(): | |
with gr.TabItem("Latent Diffusion"): | |
steps = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1) | |
width = gr.inputs.Slider(label="Width", default=256, step=32, maximum=256, minimum=32) | |
height = gr.inputs.Slider(label="Height", default=256, step=32, maximum = 256, minimum=32) | |
images = gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4) | |
diversity = gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0) | |
get_image_latent = gr.Button("Generate Image",css=css_mt) | |
with gr.TabItem("ruDALLE"): | |
aspect = gr.inputs.Radio(label="Aspect Ratio", choices=["Square", "Horizontal", "Vertical"],default="Square") | |
model = gr.inputs.Dropdown(label="Model", choices=["Surrealism","Realism", "Emoji"], default="Surrealism") | |
get_image_rudalle = gr.Button("Generate Image",css=css_mt) | |
with gr.Row(): | |
with gr.Tabs(): | |
with gr.TabItem("Image output"): | |
image = gr.outputs.Image() | |
with gr.TabItem("Gallery output"): | |
gallery = gr.outputs.Carousel(label="Individual images",components=["image"]) | |
get_image_latent.click(text2image_latent, inputs=[text,steps,width,height,images,diversity], outputs=[image,gallery]) | |
get_image_rudalle.click(text2image_rudalle, inputs=[text,aspect,model], outputs=image) | |
mindseye.launch(enable_queue=True) | |