Spaces:
Runtime error
Runtime error
import gradio as gr | |
import random | |
import os | |
import io, base64 | |
from PIL import Image | |
import numpy | |
import shortuuid | |
latent = gr.Interface.load("spaces/multimodalart/latentdiffusion") | |
rudalle = gr.Interface.load("spaces/multimodalart/rudalle") | |
diffusion = gr.Interface.load("spaces/multimodalart/diffusion") | |
print(diffusion) | |
vqgan = gr.Interface.load("spaces/multimodalart/vqgan") | |
def text2image_latent(text,steps,width,height,images,diversity): | |
results = latent(text, steps, width, height, images, diversity) | |
image_paths = [] | |
image_arrays = [] | |
for image in results[1]: | |
image_str = image[0] | |
image_str = image_str.replace("data:image/png;base64,","") | |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8")) | |
img = Image.open(io.BytesIO(decoded_bytes)) | |
url = shortuuid.uuid() | |
temp_dir = './tmp' | |
if not os.path.exists(temp_dir): | |
os.makedirs(temp_dir, exist_ok=True) | |
image_path = f'{temp_dir}/{url}.png' | |
img.save(f'{temp_dir}/{url}.png') | |
image_paths.append(image_path) | |
return(image_paths) | |
def text2image_rudalle(text,aspect,model): | |
image = rudalle(text,aspect,model)[0] | |
return([image]) | |
def text2image_vqgan(text,width,height,style,steps,flavor): | |
results = vqgan(text,width,height,style,steps,flavor) | |
return([results]) | |
def text2image_diffusion(text,steps_diff, images_diff, weight, clip): | |
results = diffusion(text, steps_diff, images_diff, weight, clip) | |
image_paths = [] | |
image_arrays = [] | |
for image in results: | |
image_str = image[0] | |
image_str = image_str.replace("data:image/png;base64,","") | |
decoded_bytes = base64.decodebytes(bytes(image_str, "utf-8")) | |
img = Image.open(io.BytesIO(decoded_bytes)) | |
#image_arrays.append(numpy.asarray(img)) | |
url = shortuuid.uuid() | |
temp_dir = './tmp' | |
if not os.path.exists(temp_dir): | |
os.makedirs(temp_dir, exist_ok=True) | |
image_path = f'{temp_dir}/{url}.png' | |
img.save(f'{temp_dir}/{url}.png') | |
image_paths.append(image_path) | |
return(image_paths) | |
css_mt = {"margin-top": "1em"} | |
empty = gr.outputs.HTML() | |
with gr.Blocks() as mindseye: | |
gr.Markdown("<h1>MindsEye Lite <small><small>run multiple text-to-image models in one place</small></small></h1><p>MindsEye Lite orchestrates multiple text-to-image Hugging Face Spaces in one convenient space, so you can try different models. This work carries the spirit of <a href='https://multimodal.art/mindseye' target='_blank'>MindsEye Beta</a>, a tool to run multiple models with a single UI, but adjusted to the current hardware limitations of Spaces. MindsEye Lite was created by <a style='color: rgb(99, 102, 241);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a>, keep up with the <a style='color: rgb(99, 102, 241);' href='https://multimodal.art/news' target='_blank'>latest multimodal ai art news here</a> and consider <a style='color: rgb(99, 102, 241);' href='https://www.patreon.com/multimodalart' target='_blank'>supporting us on Patreon</a></div></p>") | |
gr.Markdown("<style>.mx-auto.container .gr-form-gap {flex-direction: row; gap: calc(1rem * calc(1 - var(--tw-space-y-reverse)));} .mx-auto.container .gr-form-gap .flex-col, .mx-auto.container .gr-form-gap .gr-box{width: 100%}</style>") | |
text = gr.inputs.Textbox(placeholder="Type your prompt to generate an image", label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting'", default="A giant mecha robot in Rio de Janeiro, oil on canvas") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Tabs(): | |
with gr.TabItem("Latent Diffusion"): | |
gr.Markdown("Latent Diffusion is the state of the art of open source text-to-image models, superb in text synthesis. Sometimes struggles with complex prompts") | |
steps = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1) | |
width = gr.inputs.Slider(label="Width", default=256, step=32, maximum=256, minimum=32) | |
height = gr.inputs.Slider(label="Height", default=256, step=32, maximum = 256, minimum=32) | |
images = gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4) | |
diversity = gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0) | |
get_image_latent = gr.Button("Generate Image",css=css_mt) | |
with gr.TabItem("ruDALLE"): | |
gr.Markdown("ruDALLE is a replication of DALL-E 1 in the russian language. No worries, your prompts will be translated automatically to russian. In case you see an error, try again a few times") | |
aspect = gr.inputs.Radio(label="Aspect Ratio", choices=["Square", "Horizontal", "Vertical"],default="Square") | |
model = gr.inputs.Dropdown(label="Model", choices=["Surrealism","Realism", "Emoji"], default="Surrealism") | |
get_image_rudalle = gr.Button("Generate Image",css=css_mt) | |
with gr.TabItem("VQGAN+CLIP"): | |
gr.Markdown("VQGAN+CLIP is the most famous text-to-image generator. Can produce good artistic results") | |
width_vq = gr.inputs.Slider(label="Width", default=256, minimum=32, step=32, maximum=512) | |
height_vq= gr.inputs.Slider(label="Height", default=256, minimum=32, step=32, maximum=512) | |
style = gr.inputs.Dropdown(label="Style - Hyper Fast Results is fast but compromises a bit of the quality",choices=["Default","Balanced","Detailed","Consistent Creativity","Realistic","Smooth","Subtle MSE","Hyper Fast Results"],default="Hyper Fast Results") | |
steps_vq = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate. All styles that are not Hyper Fast need at least 200 steps",default=50,maximum=300,minimum=1,step=1) | |
flavor = gr.inputs.Dropdown(label="Flavor - pick a flavor for the style of the images, based on the images below",choices=["ginger", "cumin", "holywater", "zynth", "wyvern", "aaron", "moth", "juu"]) | |
get_image_vqgan = gr.Button("Generate Image",css=css_mt) | |
with gr.TabItem("Guided Diffusion"): | |
gr.Markdown("Guided Diffusion models produce superb quality results. V-Diffusion is its latest implementation") | |
steps_diff = gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=40,maximum=80,minimum=1,step=1) | |
images_diff = gr.inputs.Slider(label="Number of images in parallel", default=2, maximum=4, minimum=1, step=1) | |
weight = gr.inputs.Slider(label="Weight - how closely the image should resemble the prompt", default=5, maximum=15, minimum=0, step=1) | |
clip = gr.inputs.Checkbox(label="CLIP Guided - improves coherence with complex prompts, makes it slower") | |
get_image_diffusion = gr.Button("Generate Image",css=css_mt) | |
with gr.Row(): | |
with gr.Tabs(): | |
#with gr.TabItem("Image output"): | |
# image = gr.outputs.Image() | |
with gr.TabItem("Gallery output"): | |
gallery = gr.Gallery(label="Individual images") | |
get_image_latent.click(text2image_latent, inputs=[text,steps,width,height,images,diversity], outputs=gallery) | |
get_image_rudalle.click(text2image_rudalle, inputs=[text,aspect,model], outputs=gallery) | |
get_image_vqgan.click(text2image_vqgan, inputs=[text,width_vq,height_vq,style,steps_vq,flavor],outputs=gallery) | |
get_image_diffusion.click(text2image_diffusion, inputs=[text, steps_diff, images_diff, weight, clip],outputs=gallery) | |
mindseye.launch() |