Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,913 Bytes
ea02521 2a06b1f 0bc7df2 2a06b1f 6a7b482 0238b02 2a06b1f 0bc7df2 2a06b1f 0bc7df2 2a06b1f 0238b02 2a06b1f 0238b02 2a06b1f 0bc7df2 2a06b1f 0238b02 2a06b1f 0bc7df2 2a06b1f 0238b02 2a06b1f 0238b02 c80dcb4 0bc7df2 2a06b1f 0bc7df2 2a06b1f 0bc7df2 6a7b482 0bc7df2 2a06b1f 6a7b482 0bc7df2 6a7b482 0bc7df2 6a7b482 0bc7df2 6a7b482 0bc7df2 0238b02 0bc7df2 6a7b482 0bc7df2 6a7b482 0238b02 6a7b482 9b29685 6a7b482 0bc7df2 6a7b482 c80dcb4 0bc7df2 c80dcb4 0238b02 0bc7df2 0238b02 9b29685 0238b02 9b29685 6a7b482 0bc7df2 6a7b482 0bc7df2 6a7b482 0238b02 6a7b482 0bc7df2 2a06b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import gradio as gr
import fal_client
import os
from typing import Optional, List
from huggingface_hub import whoami
# It is recommended to create this as a Secret on your Hugging Face Space
# For example: FAL_KEY = "fal_key_..."
FAL_KEY = os.getenv("FAL_KEY", "")
# Set the key for the fal_client
if FAL_KEY:
fal_client.api_key = FAL_KEY
def get_fal_key():
"""Checks for the FAL_KEY and raises a Gradio error if it's not set."""
if not FAL_KEY:
raise gr.Error("FAL_KEY is not set. Please add it to your Hugging Face Space secrets.")
def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
"""Verifies if the user is a Hugging Face PRO user using their token."""
if not token:
return False
try:
user_info = whoami(token=token.token)
return user_info.get("isPro", False)
except Exception as e:
print(f"Could not verify user's PRO status: {e}")
return False
# --- Backend Generation Functions ---
def run_single_image_logic(prompt: str, image: Optional[str] = None) -> str:
"""Handles text-to-image or single image-to-image and returns a single URL string."""
get_fal_key()
if image:
image_url = fal_client.upload_file(image)
result = fal_client.run(
"fal-ai/nano-banana/edit",
arguments={"prompt": prompt, "image_url": image_url},
)
else:
result = fal_client.run(
"fal-ai/nano-banana", arguments={"prompt": prompt}
)
return result["images"][0]["url"]
def run_multi_image_logic(prompt: str, images: List[str]) -> str:
"""
Handles multi-image editing and returns the URL of the LAST generated image.
"""
get_fal_key()
if not images:
raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
last_image_url = ""
for image_path in images:
image_url = fal_client.upload_file(image_path)
result = fal_client.run(
"fal-ai/nano-banana/edit",
arguments={"prompt": prompt, "image_url": image_url},
)
last_image_url = result["images"][0]["url"]
return last_image_url
# --- Gradio App UI ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Nano Banana Image Generation")
gr.Markdown("Generate or edit images with FAL. **Sign in with Hugging Face to begin.**")
login_button = gr.LoginButton()
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
with main_interface:
gr.Markdown("## Welcome, PRO User!")
with gr.Row():
# LEFT COLUMN: Inputs
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="Prompt",
placeholder="A delicious looking pizza"
)
active_tab_state = gr.State(value="single")
with gr.Tabs() as tabs:
with gr.TabItem("Single Image", id="single") as single_tab:
image_input = gr.Image(
type="filepath",
label="Input Image (Optional for text-to-image)"
)
with gr.TabItem("Multiple Images", id="multiple") as multi_tab:
gallery_input = gr.Gallery(
label="Input Images", file_types=["image"]
)
generate_button = gr.Button("Generate", variant="primary")
# RIGHT COLUMN: Outputs
with gr.Column(scale=1):
output_image = gr.Image(label="Output")
use_image_button = gr.Button("♻️ Use this Image for Next Edit")
# --- Event Handlers ---
def unified_generator(
prompt: str,
single_image: Optional[str],
multi_images: Optional[List[str]],
active_tab: str,
oauth_token: Optional[gr.OAuthToken] = None,
) -> str:
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This service is for PRO users only.")
if active_tab == "multiple" and multi_images:
return run_multi_image_logic(prompt, multi_images)
else:
return run_single_image_logic(prompt, single_image)
single_tab.select(lambda: "single", None, active_tab_state)
multi_tab.select(lambda: "multiple", None, active_tab_state)
generate_button.click(
unified_generator,
inputs=[prompt_input, image_input, gallery_input, active_tab_state],
outputs=[output_image],
)
# Corrected handler for the continuous editing loop.
# It takes the output image and directly returns it to be used as the input.
use_image_button.click(
lambda img: img, # A simple function that returns its input
inputs=[output_image],
outputs=[image_input]
)
# --- Access Control Logic ---
def control_access(
profile: Optional[gr.OAuthProfile] = None,
oauth_token: Optional[gr.OAuthToken] = None
):
if not profile:
return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = (
"## ✨ Exclusive Access for PRO Users\n\n"
"Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n"
"To unlock this and many other benefits, please consider upgrading your account.\n\n"
"### [**Become a PRO Member Today!**](https://huggingface.co/pro)"
)
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
if __name__ == "__main__":
demo.launch() |