Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,712 Bytes
ea02521 2a06b1f 0bc7df2 2a06b1f 6a7b482 2a06b1f 0bc7df2 2a06b1f 0bc7df2 2a06b1f 6a7b482 2a06b1f 6a7b482 0bc7df2 2a06b1f 0bc7df2 2a06b1f 0bc7df2 2a06b1f 7848664 0bc7df2 2a06b1f 0bc7df2 2a06b1f 0bc7df2 6a7b482 0bc7df2 2a06b1f 6a7b482 0bc7df2 6a7b482 0bc7df2 6a7b482 0bc7df2 6a7b482 0bc7df2 9b29685 0b8abda 0bc7df2 6a7b482 0bc7df2 6a7b482 0bc7df2 6a7b482 9b29685 6a7b482 0bc7df2 6a7b482 9b29685 0bc7df2 6a7b482 0bc7df2 9b29685 6a7b482 0bc7df2 6a7b482 0bc7df2 6a7b482 0bc7df2 2a06b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import gradio as gr
import fal_client
import os
from typing import Optional, List
from huggingface_hub import whoami
# It is recommended to create this as a Secret on your Hugging Face Space
# For example: FAL_KEY = "fal_key_..."
FAL_KEY = os.getenv("FAL_KEY", "")
# Set the key for the fal_client
if FAL_KEY:
fal_client.api_key = FAL_KEY
def get_fal_key():
"""Checks for the FAL_KEY and raises a Gradio error if it's not set."""
if not FAL_KEY:
raise gr.Error("FAL_KEY is not set. Please add it to your Hugging Face Space secrets.")
def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
"""Verifies if the user is a Hugging Face PRO user using their token."""
if not token:
return False
try:
user_info = whoami(token=token.token)
return user_info.get("isPro", False)
except Exception as e:
print(f"Could not verify user's PRO status: {e}")
return False
# --- Backend Generation Functions ---
def run_single_image_logic(prompt: str, image: Optional[str] = None) -> List[str]:
"""Handles text-to-image or single image-to-image and returns a list."""
get_fal_key()
if image:
image_url = fal_client.upload_file(image)
result = fal_client.run(
"fal-ai/nano-banana/edit",
arguments={"prompt": prompt, "image_url": image_url},
)
else:
result = fal_client.run(
"fal-ai/nano-banana", arguments={"prompt": prompt}
)
return [result["images"][0]["url"]]
def run_multi_image_logic(prompt: str, images: List[str]) -> List[str]:
"""Handles multi-image editing."""
get_fal_key()
if not images:
raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
output_images = []
for image_path in images:
image_url = fal_client.upload_file(image_path)
result = fal_client.run(
"fal-ai/nano-banana/edit",
arguments={"prompt": prompt, "image_url": image_url},
)
output_images.append(result["images"][0]["url"])
return output_images
# --- Gradio App UI ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# Nano Banana for PROs")
gr.Markdown("Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. [Subscribe to PRO](https://huggingface.co/pro)")
login_button = gr.LoginButton()
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
with main_interface:
gr.Markdown("## Welcome, PRO User!")
with gr.Row():
# LEFT COLUMN: Inputs
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="Prompt",
placeholder="A delicious looking pizza"
)
active_tab_state = gr.State(value="single")
with gr.Tabs() as tabs:
with gr.TabItem("Single Image", id="single") as single_tab:
image_input = gr.Image(
type="filepath",
label="Input Image (Optional for text-to-image)"
)
with gr.TabItem("Multiple Images", id="multiple") as multi_tab:
gallery_input = gr.Gallery(
label="Input Images", file_types=["image"]
)
generate_button = gr.Button("Generate", variant="primary")
# RIGHT COLUMN: Outputs
with gr.Column(scale=1):
output_gallery = gr.Gallery(label="Output")
selected_output_image_state = gr.State()
use_image_button = gr.Button("♻️ Use Generated Image for Next Edit")
# --- Event Handlers ---
def unified_generator(
prompt: str,
single_image: Optional[str],
multi_images: Optional[List[str]],
active_tab: str,
oauth_token: Optional[gr.OAuthToken] = None,
) -> List[str]:
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This service is for PRO users only.")
if active_tab == "multiple" and multi_images:
return run_multi_image_logic(prompt, multi_images)
else:
return run_single_image_logic(prompt, single_image)
single_tab.select(lambda: "single", None, active_tab_state)
multi_tab.select(lambda: "multiple", None, active_tab_state)
generate_button.click(
unified_generator,
inputs=[prompt_input, image_input, gallery_input, active_tab_state, login_button],
outputs=[output_gallery],
)
# New handlers for the continuous editing loop
def store_selected_image(evt: gr.SelectData):
"""When an image is selected in the output gallery, store its path in state."""
return evt.value['image']
def reuse_output_image(selected_image_path):
"""
Takes the path from state and sends it to the single image input.
Also forces the UI to switch to the "Single Image" tab.
"""
if not selected_image_path:
gr.Warning("Please select an image from the output gallery first!")
return None, gr.update()
# Output 1: The image path for the gr.Image component
# Output 2: The ID of the tab to select for the gr.Tabs component
return selected_image_path, "single"
output_gallery.select(store_selected_image, None, selected_output_image_state)
use_image_button.click(
reuse_output_image,
inputs=[selected_output_image_state],
outputs=[image_input, tabs]
)
# --- Access Control Logic ---
def control_access(
profile: Optional[gr.OAuthProfile] = None,
oauth_token: Optional[gr.OAuthToken] = None
):
if not profile:
return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = (
"## ✨ Exclusive Access for PRO Users\n\n"
"Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n"
"To unlock this and many other benefits, please consider upgrading your account.\n\n"
"### [**Become a PRO Member Today!**](https://huggingface.co/pro)"
)
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
if __name__ == "__main__":
demo.launch() |