File size: 9,336 Bytes
ea02521
7541de2
2a06b1f
0bc7df2
 
7541de2
 
 
2a06b1f
7541de2
 
 
 
 
 
 
 
 
2a06b1f
6a7b482
940de5b
6a7b482
 
 
 
940de5b
 
 
 
 
 
6a7b482
940de5b
6a7b482
 
 
 
7541de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a06b1f
0238b02
 
7541de2
0238b02
2a06b1f
0bc7df2
7541de2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a06b1f
 
6323c73
2eee636
 
 
 
1d1bb6e
ab5da9e
2eee636
6323c73
7541de2
 
0bc7df2
 
2a06b1f
 
 
0bc7df2
 
6a7b482
 
 
0bc7df2
 
cb69c5f
0bc7df2
6a7b482
0bc7df2
cb69c5f
0bc7df2
a6c2e72
 
 
 
 
0bc7df2
 
 
2eee636
0238b02
1bb0117
0415fd2
ac1a0c2
 
6a7b482
0bc7df2
 
 
 
6a7b482
0238b02
 
6a7b482
 
 
 
9b29685
6a7b482
0bc7df2
6a7b482
 
c80dcb4
0bc7df2
 
c80dcb4
0238b02
0bc7df2
 
9b29685
8ec0499
0238b02
 
9b29685
 
6a7b482
0bc7df2
 
 
 
6a7b482
0bc7df2
6a7b482
 
 
 
 
 
 
 
 
0238b02
6a7b482
0bc7df2
2a06b1f
 
97dc2fb
bb1f9a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import gradio as gr
import google.generativeai as genai
import os
from typing import Optional, List
from huggingface_hub import whoami
from PIL import Image
import tempfile
import io # Import io for handling in-memory binary streams

# --- Google Gemini API Configuration ---
# Set your Google API key as an environment variable
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "")
if not GOOGLE_API_KEY:
    raise ValueError("GOOGLE_API_KEY environment variable not set.")
genai.configure(api_key=GOOGLE_API_KEY)

# --- Define the correct model name ---
GEMINI_MODEL_NAME = 'gemini-2.5-flash-image-preview'

def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
    """Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
    if not token:
        return False
    try:
        user_info = whoami(token=token.token)
        if user_info.get("isPro", False):
            return True
        orgs = user_info.get("orgs", [])
        if any(org.get("isEnterprise", False) for org in orgs):
            return True
        return False
    except Exception as e:
        print(f"Could not verify user's PRO/Enterprise status: {e}")
        return False

# --- Backend Generation Functions ---

def run_single_image_logic(prompt: str, image_path: Optional[str] = None) -> str:
    """Handles text-to-image or single image-to-image using Google Gemini."""
    try:
        model = genai.GenerativeModel(GEMINI_MODEL_NAME) # Use the defined model name
        contents = [prompt]
        if image_path:
            input_image = Image.open(image_path)
            contents.append(input_image)

        response = model.generate_content(contents)
        
        # Access the image data correctly based on the response structure
        # Assuming the generated content might be in response.candidates[0].content.parts[0].inline_data.data
        # Or direct from response.parts if it's a single part with inline_data
        
        image_data = None
        if hasattr(response, 'parts') and response.parts:
            for part in response.parts:
                if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'):
                    image_data = part.inline_data.data
                    break
        elif hasattr(response, 'candidates') and response.candidates:
            for candidate in response.candidates:
                if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts') and candidate.content.parts:
                    for part in candidate.content.parts:
                        if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'):
                            image_data = part.inline_data.data
                            break
                if image_data:
                    break
        
        if not image_data:
            raise ValueError("No image data found in the model response.")

        # Save the generated image to a temporary file to return its path
        pil_image = Image.open(io.BytesIO(image_data))
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
            pil_image.save(tmpfile.name)
            return tmpfile.name

    except Exception as e:
        raise gr.Error(f"Image generation failed: {e}")


def run_multi_image_logic(prompt: str, images: List[str]) -> str:
    """
    Handles multi-image editing by sending a list of images and a prompt.
    """
    if not images:
        raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
    
    try:
        model = genai.GenerativeModel(GEMINI_MODEL_NAME) # Use the defined model name
        # The prompt should be the last part of the contents list
        contents = [Image.open(image_path[0]) for image_path in images]
        contents.append(prompt)

        response = model.generate_content(contents)
        
        image_data = None
        if hasattr(response, 'parts') and response.parts:
            for part in response.parts:
                if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'):
                    image_data = part.inline_data.data
                    break
        elif hasattr(response, 'candidates') and response.candidates:
            for candidate in response.candidates:
                if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts') and candidate.content.parts:
                    for part in candidate.content.parts:
                        if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'):
                            image_data = part.inline_data.data
                            break
                if image_data:
                    break

        if not image_data:
            raise ValueError("No image data found in the model response.")
            
        # Save the generated image to a temporary file to return its path
        pil_image = Image.open(io.BytesIO(image_data))
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile:
            pil_image.save(tmpfile.name)
            return tmpfile.name
            
    except Exception as e:
        raise gr.Error(f"Image generation failed: {e}")


# --- Gradio App UI ---
css = '''
#sub_title{margin-top: -35px !important}
.tab-wrapper{margin-bottom: -33px !important}
.tabitem{padding: 0px !important}
#output{margin-top: 25px}
.fillable{max-width: 980px !important}
.dark .progress-text {color: white}
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
    gr.HTML("<h1 style='text-align:center'>Image Generation with Google Gemini</h1>")
    gr.HTML("<h3 style='text-align:center'>Hugging Face PRO users can use Google's Gemini 2.5 Flash Image Preview on this Space. <a href='https://huggingface.co/pro' target='_blank'>Subscribe to PRO</a></h3>", elem_id="sub_title")

    pro_message = gr.Markdown(visible=False)
    main_interface = gr.Column(visible=False)

    with main_interface:
        with gr.Row():
            with gr.Column(scale=1):
                active_tab_state = gr.State(value="single")
                with gr.Tabs() as tabs:
                    with gr.TabItem("Single Image", id="single") as single_tab:
                        image_input = gr.Image(
                            type="filepath",
                            label="Input Image (Leave blank for text-to-image)"
                        )
                    with gr.TabItem("Multiple Images", id="multiple") as multi_tab:
                        gallery_input = gr.Gallery(
                            label="Input Images (drop all images here)", file_types=["image"]
                        )
                prompt_input = gr.Textbox(
                    label="Prompt",
                    info="Tell the model what you want it to do",
                    placeholder="A delicious looking pizza"
                )
                generate_button = gr.Button("Generate", variant="primary")

            with gr.Column(scale=1):
                output_image = gr.Image(label="Output", interactive=False, elem_id="output")
                use_image_button = gr.Button("♻️ Use this Image for Next Edit")
        gr.Markdown("## Thank you for being a PRO! 🤗")
    
    login_button = gr.LoginButton()
    
    # --- Event Handlers ---
    def unified_generator(
        prompt: str,
        single_image: Optional[str],
        multi_images: Optional[List[str]],
        active_tab: str,
        oauth_token: Optional[gr.OAuthToken] = None,
    ) -> str:
        if not verify_pro_status(oauth_token):
            raise gr.Error("Access Denied. This service is for PRO users only.")
        if active_tab == "multiple" and multi_images:
            return run_multi_image_logic(prompt, multi_images)
        else:
            return run_single_image_logic(prompt, single_image)

    single_tab.select(lambda: "single", None, active_tab_state)
    multi_tab.select(lambda: "multiple", None, active_tab_state)

    generate_button.click(
        unified_generator,
        inputs=[prompt_input, image_input, gallery_input, active_tab_state],
        outputs=[output_image],
    )

    use_image_button.click(
        lambda img: img, 
        inputs=[output_image],
        outputs=[image_input]
    )

    # --- Access Control Logic ---
    def control_access(
        profile: Optional[gr.OAuthProfile] = None,
        oauth_token: Optional[gr.OAuthToken] = None
    ):
        if not profile:
            return gr.update(visible=False), gr.update(visible=False)
        if verify_pro_status(oauth_token):
            return gr.update(visible=True), gr.update(visible=False)
        else:
            message = (
                "## ✨ Exclusive Access for PRO Users\n\n"
                "Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n"
                "To unlock this and many other benefits, please consider upgrading your account.\n\n"
                "### [**Become a PRO Member Today!**](https://huggingface.co/pro)"
            )
            return gr.update(visible=False), gr.update(visible=True, value=message)

    demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])

if __name__ == "__main__":
    demo.queue(max_size=None, default_concurrency_limit=None)
    demo.launch()