Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,696 Bytes
ea02521 2a06b1f 0bc7df2 2a06b1f 332ab92 8ec0499 2a06b1f 6a7b482 0238b02 2a06b1f 0ab3554 2a06b1f 0bc7df2 2a06b1f 0238b02 2a06b1f 0238b02 0ab3554 0238b02 2a06b1f 0bc7df2 2a06b1f f5f0a01 2a06b1f cb69c5f ef5a425 0bc7df2 2a06b1f 0bc7df2 2a06b1f 8ec0499 0bc7df2 6a7b482 0bc7df2 cb69c5f 0bc7df2 6a7b482 0bc7df2 cb69c5f 0bc7df2 a6c2e72 0bc7df2 cb69c5f 0238b02 0bc7df2 6a7b482 0bc7df2 6a7b482 0238b02 6a7b482 9b29685 6a7b482 0bc7df2 6a7b482 c80dcb4 0bc7df2 c80dcb4 0238b02 0bc7df2 9b29685 8ec0499 0238b02 9b29685 6a7b482 0bc7df2 6a7b482 0bc7df2 6a7b482 0238b02 6a7b482 0bc7df2 2a06b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import gradio as gr
import fal_client
import os
from typing import Optional, List
from huggingface_hub import whoami
FAL_KEY = os.getenv("FAL_KEY", "")
fal_client.api_key = FAL_KEY
def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
"""Verifies if the user is a Hugging Face PRO user using their token."""
if not token:
return False
try:
user_info = whoami(token=token.token)
return user_info.get("isPro", False)
except Exception as e:
print(f"Could not verify user's PRO status: {e}")
return False
# --- Backend Generation Functions ---
def run_single_image_logic(prompt: str, image: Optional[str] = None) -> str:
"""Handles text-to-image or single image-to-image and returns a single URL string."""
if image:
image_url = fal_client.upload_file(image)
result = fal_client.run(
"fal-ai/nano-banana/edit",
# CORRECTED: The 'edit' endpoint always expects 'image_urls' as a list.
arguments={"prompt": prompt, "image_urls": [image_url]},
)
else:
result = fal_client.run(
"fal-ai/nano-banana", arguments={"prompt": prompt}
)
return result["images"][0]["url"]
def run_multi_image_logic(prompt: str, images: List[str]) -> str:
"""
Handles multi-image editing by sending a list of URLs in a single API call.
"""
if not images:
raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
image_urls = [fal_client.upload_file(image_path) for image_path in images]
result = fal_client.run(
"fal-ai/nano-banana/edit",
arguments={
"prompt": prompt,
"image_urls": image_urls,
"num_images": 1
},
)
return result["images"][0]["url"]
# --- Gradio App UI ---
with gr.Blocks(theme=gr.themes.Citrus()) as demo:
gr.HTML("<img src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros.png' style='display: block; margin: 0 auto; max-width: 500px' />")
gr.HTML("<h3 style='text-align:center'>Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. <a href='https://huggingface.co/pro' target='_blank'>Subscribe to PRO</a></h3>")
login_button = gr.LoginButton()
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
with main_interface:
gr.Markdown("## Thanks for being a PRO! 🤗")
with gr.Row():
with gr.Column(scale=1):
active_tab_state = gr.State(value="single")
with gr.Tabs() as tabs:
with gr.TabItem("Single Image", id="single") as single_tab:
image_input = gr.Image(
type="filepath",
label="Input Image (Leave blank for text-to-image)"
)
with gr.TabItem("Multiple Images", id="multiple") as multi_tab:
gallery_input = gr.Gallery(
label="Input Images (drop all images here)", file_types=["image"]
)
prompt_input = gr.Textbox(
label="Prompt",
info="Tell the model what you want it to do",
placeholder="A delicious looking pizza"
)
generate_button = gr.Button("Generate", variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label="Output", interactive=False)
use_image_button = gr.Button("♻️ Use this Image for Next Edit")
# --- Event Handlers ---
def unified_generator(
prompt: str,
single_image: Optional[str],
multi_images: Optional[List[str]],
active_tab: str,
oauth_token: Optional[gr.OAuthToken] = None,
) -> str:
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This service is for PRO users only.")
if active_tab == "multiple" and multi_images:
return run_multi_image_logic(prompt, multi_images)
else:
return run_single_image_logic(prompt, single_image)
single_tab.select(lambda: "single", None, active_tab_state)
multi_tab.select(lambda: "multiple", None, active_tab_state)
generate_button.click(
unified_generator,
inputs=[prompt_input, image_input, gallery_input, active_tab_state],
outputs=[output_image],
)
use_image_button.click(
lambda img: img,
inputs=[output_image],
outputs=[image_input]
)
# --- Access Control Logic ---
def control_access(
profile: Optional[gr.OAuthProfile] = None,
oauth_token: Optional[gr.OAuthToken] = None
):
if not profile:
return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = (
"## ✨ Exclusive Access for PRO Users\n\n"
"Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n"
"To unlock this and many other benefits, please consider upgrading your account.\n\n"
"### [**Become a PRO Member Today!**](https://huggingface.co/pro)"
)
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
if __name__ == "__main__":
demo.launch() |