File size: 5,499 Bytes
ea02521
2a06b1f
 
0bc7df2
 
2a06b1f
 
8ec0499
2a06b1f
6a7b482
 
 
 
 
 
 
 
 
 
 
 
 
0238b02
 
2a06b1f
 
 
 
0ab3554
 
2a06b1f
 
 
0bc7df2
2a06b1f
0238b02
2a06b1f
0238b02
 
0ab3554
0238b02
2a06b1f
0bc7df2
2a06b1f
f5f0a01
 
 
 
 
 
 
 
 
 
2a06b1f
 
cb69c5f
c6f1d0d
 
0bc7df2
2a06b1f
0bc7df2
2a06b1f
 
 
8ec0499
0bc7df2
 
6a7b482
 
 
0bc7df2
 
cb69c5f
0bc7df2
6a7b482
0bc7df2
cb69c5f
0bc7df2
a6c2e72
 
 
 
 
0bc7df2
 
 
cb69c5f
0238b02
0bc7df2
6a7b482
0bc7df2
 
 
 
6a7b482
0238b02
 
6a7b482
 
 
 
9b29685
6a7b482
0bc7df2
6a7b482
 
c80dcb4
0bc7df2
 
c80dcb4
0238b02
0bc7df2
 
9b29685
8ec0499
0238b02
 
9b29685
 
6a7b482
0bc7df2
 
 
 
6a7b482
0bc7df2
6a7b482
 
 
 
 
 
 
 
 
0238b02
6a7b482
0bc7df2
2a06b1f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
import fal_client
import os
from typing import Optional, List
from huggingface_hub import whoami


fal_client.api_key = FAL_KEY

def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
    """Verifies if the user is a Hugging Face PRO user using their token."""
    if not token:
        return False
    try:
        user_info = whoami(token=token.token)
        return user_info.get("isPro", False)
    except Exception as e:
        print(f"Could not verify user's PRO status: {e}")
        return False

# --- Backend Generation Functions ---

def run_single_image_logic(prompt: str, image: Optional[str] = None) -> str:
    """Handles text-to-image or single image-to-image and returns a single URL string."""
    if image:
        image_url = fal_client.upload_file(image)
        result = fal_client.run(
            "fal-ai/nano-banana/edit",
            # CORRECTED: The 'edit' endpoint always expects 'image_urls' as a list.
            arguments={"prompt": prompt, "image_urls": [image_url]},
        )
    else:
        result = fal_client.run(
            "fal-ai/nano-banana", arguments={"prompt": prompt}
        )
    return result["images"][0]["url"]

def run_multi_image_logic(prompt: str, images: List[str]) -> str:
    """
    Handles multi-image editing by sending a list of URLs in a single API call.
    """
    if not images:
        raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")

    image_urls = [fal_client.upload_file(image_path) for image_path in images]
    result = fal_client.run(
        "fal-ai/nano-banana/edit",
        arguments={
            "prompt": prompt,
            "image_urls": image_urls,
            "num_images": 1
        },
    )
    return result["images"][0]["url"]

# --- Gradio App UI ---
with gr.Blocks(theme=gr.themes.Citrus()) as demo:
    gr.HTML("<h1 style='text-align:center'>Nano Banana for PROs</h1>")
    gr.Markdown("Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. [Subscribe to PRO](https://huggingface.co/pro)")

    login_button = gr.LoginButton()
    pro_message = gr.Markdown(visible=False)
    main_interface = gr.Column(visible=False)

    with main_interface:
        gr.Markdown("## Thanks for being a PRO! 🤗")
        with gr.Row():
            with gr.Column(scale=1):
                active_tab_state = gr.State(value="single")
                with gr.Tabs() as tabs:
                    with gr.TabItem("Single Image", id="single") as single_tab:
                        image_input = gr.Image(
                            type="filepath",
                            label="Input Image (Leave blank for text-to-image)"
                        )
                    with gr.TabItem("Multiple Images", id="multiple") as multi_tab:
                        gallery_input = gr.Gallery(
                            label="Input Images (drop all images here)", file_types=["image"]
                        )
                prompt_input = gr.Textbox(
                    label="Prompt",
                    info="Tell the model what you want it to do",
                    placeholder="A delicious looking pizza"
                )
                generate_button = gr.Button("Generate", variant="primary")

            with gr.Column(scale=1):
                output_image = gr.Image(label="Output", interactive=False)
                use_image_button = gr.Button("♻️ Use this Image for Next Edit")

    # --- Event Handlers ---
    def unified_generator(
        prompt: str,
        single_image: Optional[str],
        multi_images: Optional[List[str]],
        active_tab: str,
        oauth_token: Optional[gr.OAuthToken] = None,
    ) -> str:
        if not verify_pro_status(oauth_token):
            raise gr.Error("Access Denied. This service is for PRO users only.")
        if active_tab == "multiple" and multi_images:
            return run_multi_image_logic(prompt, multi_images)
        else:
            return run_single_image_logic(prompt, single_image)

    single_tab.select(lambda: "single", None, active_tab_state)
    multi_tab.select(lambda: "multiple", None, active_tab_state)

    generate_button.click(
        unified_generator,
        inputs=[prompt_input, image_input, gallery_input, active_tab_state],
        outputs=[output_image],
    )

    use_image_button.click(
        lambda img: img, 
        inputs=[output_image],
        outputs=[image_input]
    )

    # --- Access Control Logic ---
    def control_access(
        profile: Optional[gr.OAuthProfile] = None,
        oauth_token: Optional[gr.OAuthToken] = None
    ):
        if not profile:
            return gr.update(visible=False), gr.update(visible=False)
        if verify_pro_status(oauth_token):
            return gr.update(visible=True), gr.update(visible=False)
        else:
            message = (
                "## ✨ Exclusive Access for PRO Users\n\n"
                "Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n"
                "To unlock this and many other benefits, please consider upgrading your account.\n\n"
                "### [**Become a PRO Member Today!**](https://huggingface.co/pro)"
            )
            return gr.update(visible=False), gr.update(visible=True, value=message)

    demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])

if __name__ == "__main__":
    demo.launch()