Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 6,033 Bytes
ea02521 2a06b1f 0bc7df2 2a06b1f 6a7b482 0238b02 2a06b1f f5f0a01 2a06b1f f5f0a01 2a06b1f 0bc7df2 2a06b1f 0bc7df2 2a06b1f 0238b02 2a06b1f 0238b02 f5f0a01 0238b02 2a06b1f 0bc7df2 2a06b1f f5f0a01 2a06b1f cb69c5f c6f1d0d 0bc7df2 2a06b1f 0bc7df2 2a06b1f 0bc7df2 6a7b482 0bc7df2 2a06b1f 6a7b482 0bc7df2 cb69c5f 0bc7df2 6a7b482 0bc7df2 cb69c5f 0bc7df2 6a7b482 0bc7df2 cb69c5f 0238b02 0bc7df2 6a7b482 0bc7df2 6a7b482 0238b02 6a7b482 9b29685 6a7b482 0bc7df2 6a7b482 c80dcb4 0bc7df2 c80dcb4 0238b02 0bc7df2 0238b02 9b29685 0238b02 9b29685 6a7b482 0bc7df2 6a7b482 0bc7df2 6a7b482 0238b02 6a7b482 0bc7df2 2a06b1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import gradio as gr
import fal_client
import os
from typing import Optional, List
from huggingface_hub import whoami
FAL_KEY = os.getenv("FAL_KEY", "")
if FAL_KEY:
fal_client.api_key = FAL_KEY
def get_fal_key():
"""Checks for the FAL_KEY and raises a Gradio error if it's not set."""
if not FAL_KEY:
raise gr.Error("FAL_KEY is not set. Please add it to your Hugging Face Space secrets.")
def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
"""Verifies if the user is a Hugging Face PRO user using their token."""
if not token:
return False
try:
user_info = whoami(token=token.token)
return user_info.get("isPro", False)
except Exception as e:
print(f"Could not verify user's PRO status: {e}")
return False
# --- Backend Generation Functions ---
def run_single_image_logic(prompt: str, image: Optional[str] = None) -> str:
"""Handles text-to-image or single image-to-image and returns a single URL string."""
get_fal_key()
if image:
print(image)
image_url = fal_client.upload_file(image)
print(image_url)
result = fal_client.run(
"fal-ai/nano-banana/edit",
arguments={"prompt": prompt, "image_url": image_url},
)
else:
result = fal_client.run(
"fal-ai/nano-banana", arguments={"prompt": prompt}
)
return result["images"][0]["url"]
def run_multi_image_logic(prompt: str, images: List[str]) -> str:
"""
Uploads multiple images
"""
get_fal_key()
if not images:
raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")
# 1. Upload all images and collect their URLs
image_urls = [fal_client.upload_file(image_path) for image_path in images]
# 2. Make a single API call with the list of URLs
result = fal_client.run(
"fal-ai/nano-banana/edit",
arguments={
"prompt": prompt,
"image_urls": image_urls,
"num_images": 1
},
)
# 3. Return the single resulting image URL
return result["images"][0]["url"]
# --- Gradio App UI ---
with gr.Blocks(theme=gr.themes.Citrus()) as demo:
gr.HTML("<h1 style='text-align:center'>Nano Banana for PROs</h1>")
gr.Markdown("Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. [Subscribe to PRO](https://huggingface.co/pro)")
login_button = gr.LoginButton()
pro_message = gr.Markdown(visible=False)
main_interface = gr.Column(visible=False)
with main_interface:
gr.Markdown("## Welcome, PRO User!")
with gr.Row():
# LEFT COLUMN: Inputs
with gr.Column(scale=1):
prompt_input = gr.Textbox(
label="Prompt",
placeholder="A delicious looking pizza"
)
active_tab_state = gr.State(value="single")
with gr.Tabs() as tabs:
with gr.TabItem("Single Image", id="single") as single_tab:
image_input = gr.Image(
type="filepath",
label="Input Image (Leave blank for text-to-image)"
)
with gr.TabItem("Multiple Images", id="multiple") as multi_tab:
gallery_input = gr.Gallery(
label="Input Images (drop all images here)", file_types=["image"]
)
generate_button = gr.Button("Generate", variant="primary")
# RIGHT COLUMN: Outputs
with gr.Column(scale=1):
output_image = gr.Image(label="Output", interactive=False)
use_image_button = gr.Button("♻️ Use this Image for Next Edit")
# --- Event Handlers ---
def unified_generator(
prompt: str,
single_image: Optional[str],
multi_images: Optional[List[str]],
active_tab: str,
oauth_token: Optional[gr.OAuthToken] = None,
) -> str:
if not verify_pro_status(oauth_token):
raise gr.Error("Access Denied. This service is for PRO users only.")
if active_tab == "multiple" and multi_images:
return run_multi_image_logic(prompt, multi_images)
else:
return run_single_image_logic(prompt, single_image)
single_tab.select(lambda: "single", None, active_tab_state)
multi_tab.select(lambda: "multiple", None, active_tab_state)
generate_button.click(
unified_generator,
inputs=[prompt_input, image_input, gallery_input, active_tab_state],
outputs=[output_image],
)
# Corrected handler for the continuous editing loop.
# It takes the output image and directly returns it to be used as the input.
use_image_button.click(
lambda img: img, # A simple function that returns its input
inputs=[output_image],
outputs=[image_input]
)
# --- Access Control Logic ---
def control_access(
profile: Optional[gr.OAuthProfile] = None,
oauth_token: Optional[gr.OAuthToken] = None
):
if not profile:
return gr.update(visible=False), gr.update(visible=False)
if verify_pro_status(oauth_token):
return gr.update(visible=True), gr.update(visible=False)
else:
message = (
"## ✨ Exclusive Access for PRO Users\n\n"
"Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n"
"To unlock this and many other benefits, please consider upgrading your account.\n\n"
"### [**Become a PRO Member Today!**](https://huggingface.co/pro)"
)
return gr.update(visible=False), gr.update(visible=True, value=message)
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])
if __name__ == "__main__":
demo.launch() |