File size: 6,329 Bytes
ea02521
2a06b1f
 
0bc7df2
 
2a06b1f
332ab92
8ec0499
2a06b1f
6a7b482
7c573c2
6a7b482
 
 
 
7c573c2
 
 
 
 
 
 
 
 
 
 
 
6a7b482
7c573c2
6a7b482
 
 
 
0238b02
 
2a06b1f
 
 
 
0ab3554
 
2a06b1f
 
 
0bc7df2
2a06b1f
0238b02
2a06b1f
0238b02
 
0ab3554
0238b02
2a06b1f
0bc7df2
2a06b1f
f5f0a01
 
 
 
 
 
 
 
 
 
2a06b1f
 
6323c73
2eee636
 
 
 
1d1bb6e
ab5da9e
2eee636
6323c73
ef5a425
6323c73
0bc7df2
 
2a06b1f
 
 
0bc7df2
 
6a7b482
 
 
0bc7df2
 
cb69c5f
0bc7df2
6a7b482
0bc7df2
cb69c5f
0bc7df2
a6c2e72
 
 
 
 
0bc7df2
 
 
2eee636
0238b02
1bb0117
0415fd2
ac1a0c2
 
6a7b482
0bc7df2
 
 
 
6a7b482
0238b02
 
6a7b482
 
 
 
9b29685
6a7b482
0bc7df2
6a7b482
 
c80dcb4
0bc7df2
 
c80dcb4
0238b02
0bc7df2
 
9b29685
8ec0499
0238b02
 
9b29685
 
6a7b482
0bc7df2
 
 
 
6a7b482
0bc7df2
6a7b482
 
 
 
 
 
 
 
 
0238b02
6a7b482
0bc7df2
2a06b1f
 
97dc2fb
bb1f9a6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
import fal_client
import os
from typing import Optional, List
from huggingface_hub import whoami

FAL_KEY = os.getenv("FAL_KEY", "")
fal_client.api_key = FAL_KEY

def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool:
    """Verifies if the user is a Hugging Face PRO user or part of an enterprise org."""
    if not token:
        return False
    try:
        user_info = whoami(token=token.token)

        # Case 1: User is PRO
        if user_info.get("isPro", False):
            return True

        # Case 2: User is in any enterprise org
        orgs = user_info.get("orgs", [])
        if any(org.get("isEnterprise", False) for org in orgs):
            return True

        return False

    except Exception as e:
        print(f"Could not verify user's PRO/Enterprise status: {e}")
        return False

# --- Backend Generation Functions ---

def run_single_image_logic(prompt: str, image: Optional[str] = None) -> str:
    """Handles text-to-image or single image-to-image and returns a single URL string."""
    if image:
        image_url = fal_client.upload_file(image)
        result = fal_client.run(
            "fal-ai/nano-banana/edit",
            # CORRECTED: The 'edit' endpoint always expects 'image_urls' as a list.
            arguments={"prompt": prompt, "image_urls": [image_url]},
        )
    else:
        result = fal_client.run(
            "fal-ai/nano-banana", arguments={"prompt": prompt}
        )
    return result["images"][0]["url"]

def run_multi_image_logic(prompt: str, images: List[str]) -> str:
    """
    Handles multi-image editing by sending a list of URLs in a single API call.
    """
    if not images:
        raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.")

    image_urls = [fal_client.upload_file(image_path) for image_path in images]
    result = fal_client.run(
        "fal-ai/nano-banana/edit",
        arguments={
            "prompt": prompt,
            "image_urls": image_urls,
            "num_images": 1
        },
    )
    return result["images"][0]["url"]

# --- Gradio App UI ---
css = '''
#sub_title{margin-top: -35px !important}
.tab-wrapper{margin-bottom: -33px !important}
.tabitem{padding: 0px !important}
#output{margin-top: 25px}
.fillable{max-width: 980px !important}
.dark .progress-text {color: white}
'''
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
    gr.HTML("<img src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros.png' style='display: block; margin: 0 auto; max-width: 500px' />")
    gr.HTML("<h3 style='text-align:center'>Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. <a href='https://huggingface.co/pro' target='_blank'>Subscribe to PRO</a></h3>", elem_id="sub_title")

    pro_message = gr.Markdown(visible=False)
    main_interface = gr.Column(visible=False)

    with main_interface:
        with gr.Row():
            with gr.Column(scale=1):
                active_tab_state = gr.State(value="single")
                with gr.Tabs() as tabs:
                    with gr.TabItem("Single Image", id="single") as single_tab:
                        image_input = gr.Image(
                            type="filepath",
                            label="Input Image (Leave blank for text-to-image)"
                        )
                    with gr.TabItem("Multiple Images", id="multiple") as multi_tab:
                        gallery_input = gr.Gallery(
                            label="Input Images (drop all images here)", file_types=["image"]
                        )
                prompt_input = gr.Textbox(
                    label="Prompt",
                    info="Tell the model what you want it to do",
                    placeholder="A delicious looking pizza"
                )
                generate_button = gr.Button("Generate", variant="primary")

            with gr.Column(scale=1):
                output_image = gr.Image(label="Output", interactive=False, elem_id="output")
                use_image_button = gr.Button("♻️ Use this Image for Next Edit")
        gr.Markdown("## Thank you for being a PRO! 🤗")
    
    login_button = gr.LoginButton()
    
    # --- Event Handlers ---
    def unified_generator(
        prompt: str,
        single_image: Optional[str],
        multi_images: Optional[List[str]],
        active_tab: str,
        oauth_token: Optional[gr.OAuthToken] = None,
    ) -> str:
        if not verify_pro_status(oauth_token):
            raise gr.Error("Access Denied. This service is for PRO users only.")
        if active_tab == "multiple" and multi_images:
            return run_multi_image_logic(prompt, multi_images)
        else:
            return run_single_image_logic(prompt, single_image)

    single_tab.select(lambda: "single", None, active_tab_state)
    multi_tab.select(lambda: "multiple", None, active_tab_state)

    generate_button.click(
        unified_generator,
        inputs=[prompt_input, image_input, gallery_input, active_tab_state],
        outputs=[output_image],
    )

    use_image_button.click(
        lambda img: img, 
        inputs=[output_image],
        outputs=[image_input]
    )

    # --- Access Control Logic ---
    def control_access(
        profile: Optional[gr.OAuthProfile] = None,
        oauth_token: Optional[gr.OAuthToken] = None
    ):
        if not profile:
            return gr.update(visible=False), gr.update(visible=False)
        if verify_pro_status(oauth_token):
            return gr.update(visible=True), gr.update(visible=False)
        else:
            message = (
                "## ✨ Exclusive Access for PRO Users\n\n"
                "Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n"
                "To unlock this and many other benefits, please consider upgrading your account.\n\n"
                "### [**Become a PRO Member Today!**](https://huggingface.co/pro)"
            )
            return gr.update(visible=False), gr.update(visible=True, value=message)

    demo.load(control_access, inputs=None, outputs=[main_interface, pro_message])

if __name__ == "__main__":
    demo.queue(max_size=None, default_concurrency_limit=None)
    demo.launch()