Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
from google import genai | |
from google.genai import types | |
import os | |
from typing import Optional, List | |
from huggingface_hub import whoami | |
from PIL import Image | |
from io import BytesIO | |
import tempfile | |
# --- Google Gemini API Configuration --- | |
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY", "") | |
if not GOOGLE_API_KEY: | |
raise ValueError("GOOGLE_API_KEY environment variable not set.") | |
client = genai.Client( | |
api_key=os.environ.get("GEMINI_API_KEY"), | |
) | |
GEMINI_MODEL_NAME = 'gemini-2.5-flash-image-preview' | |
def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool: | |
"""Verifies if the user is a Hugging Face PRO user or part of an enterprise org.""" | |
if not token: | |
return False | |
try: | |
user_info = whoami(token=token.token) | |
if user_info.get("isPro", False): | |
return True | |
orgs = user_info.get("orgs", []) | |
if any(org.get("isEnterprise", False) for org in orgs): | |
return True | |
return False | |
except Exception as e: | |
print(f"Could not verify user's PRO/Enterprise status: {e}") | |
return False | |
def _extract_image_data_from_response(response) -> Optional[bytes]: | |
"""Helper to extract image data from the model's response.""" | |
if hasattr(response, 'candidates') and response.candidates: | |
for candidate in response.candidates: | |
if hasattr(candidate, 'content') and hasattr(candidate.content, 'parts') and candidate.content.parts: | |
for part in candidate.content.parts: | |
if hasattr(part, 'inline_data') and hasattr(part.inline_data, 'data'): | |
return part.inline_data.data | |
return None | |
def run_single_image_logic(prompt: str, image_path: Optional[str] = None) -> str: | |
"""Handles text-to-image or single image-to-image using Google Gemini.""" | |
try: | |
contents = [prompt] | |
if image_path: | |
input_image = Image.open(image_path) | |
contents.append(input_image) | |
response = client.models.generate_content( | |
model=GEMINI_MODEL_NAME, | |
contents=contents, | |
) | |
image_data = _extract_image_data_from_response(response) | |
if not image_data: | |
raise ValueError("No image data found in the model response.") | |
# Save the generated image to a temporary file to return its path | |
pil_image = Image.open(BytesIO(image_data)) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile: | |
pil_image.save(tmpfile.name) | |
return tmpfile.name | |
except Exception as e: | |
raise gr.Error(f"Image generation failed: {e}") | |
def run_multi_image_logic(prompt: str, images: List[str]) -> str: | |
""" | |
Handles multi-image editing by sending a list of images and a prompt. | |
""" | |
if not images: | |
raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.") | |
try: | |
contents = [Image.open(image_path[0]) for image_path in images] | |
contents.append(prompt) | |
response = client.models.generate_content( | |
model=GEMINI_MODEL_NAME, | |
contents=contents, | |
) | |
image_data = _extract_image_data_from_response(response) | |
if not image_data: | |
raise ValueError("No image data found in the model response.") | |
pil_image = Image.open(BytesIO(image_data)) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmpfile: | |
pil_image.save(tmpfile.name) | |
return tmpfile.name | |
except Exception as e: | |
raise gr.Error(f"Image generation failed: {e}") | |
# --- Gradio App UI --- | |
css = ''' | |
#sub_title{margin-top: -35px !important} | |
.tab-wrapper{margin-bottom: -33px !important} | |
.tabitem{padding: 0px !important} | |
#output{margin-top: 25px} | |
.fillable{max-width: 980px !important} | |
.dark .progress-text {color: white} | |
.logo-dark{display: none} | |
.dark .logo-dark{display: block !important} | |
.dark .logo-light{display: none} | |
''' | |
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: | |
gr.HTML(''' | |
<img class="logo-dark" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros.png' style='margin: 0 auto; max-width: 500px' /> | |
<img class="logo-light" src='https://huggingface.co/spaces/multimodalart/nano-banana/resolve/main/nano_banana_pros_light.png' style='margin: 0 auto; max-width: 500px' /> | |
''') | |
gr.HTML("<h3 style='text-align:center'>Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. <a href='https://huggingface.co/pro?source=nana_banana' target='_blank'>Subscribe to PRO</a></h3>", elem_id="sub_title") | |
pro_message = gr.Markdown(visible=False) | |
main_interface = gr.Column(visible=False) | |
with main_interface: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
active_tab_state = gr.State(value="single") | |
with gr.Tabs() as tabs: | |
with gr.TabItem("Single Image", id="single") as single_tab: | |
image_input = gr.Image( | |
type="filepath", | |
label="Input Image (Leave blank for text-to-image)" | |
) | |
with gr.TabItem("Multiple Images", id="multiple") as multi_tab: | |
gallery_input = gr.Gallery( | |
label="Input Images (drop all images here)", file_types=["image"] | |
) | |
prompt_input = gr.Textbox( | |
label="Prompt", | |
placeholder="Turns this photo into a masterpiece" | |
) | |
generate_button = gr.Button("Generate", variant="primary") | |
with gr.Column(scale=1): | |
output_image = gr.Image(label="Output", interactive=False, elem_id="output") | |
use_image_button = gr.Button("♻️ Use this Image for Next Edit") | |
gr.Markdown("## Thank you for being a PRO! 🤗") | |
login_button = gr.LoginButton() | |
# --- Event Handlers --- | |
def unified_generator( | |
prompt: str, | |
single_image: Optional[str], | |
multi_images: Optional[List[str]], | |
active_tab: str, | |
oauth_token: Optional[gr.OAuthToken] = None, | |
) -> str: | |
if not verify_pro_status(oauth_token): | |
raise gr.Error("Access Denied. This service is for PRO users only.") | |
if active_tab == "multiple" and multi_images: | |
return run_multi_image_logic(prompt, multi_images) | |
else: | |
return run_single_image_logic(prompt, single_image) | |
single_tab.select(lambda: "single", None, active_tab_state) | |
multi_tab.select(lambda: "multiple", None, active_tab_state) | |
generate_button.click( | |
unified_generator, | |
inputs=[prompt_input, image_input, gallery_input, active_tab_state], | |
outputs=[output_image], | |
) | |
use_image_button.click( | |
lambda img: img, | |
inputs=[output_image], | |
outputs=[image_input] | |
) | |
# --- Access Control Logic --- | |
def control_access( | |
profile: Optional[gr.OAuthProfile] = None, | |
oauth_token: Optional[gr.OAuthToken] = None | |
): | |
if not profile: | |
return gr.update(visible=False), gr.update(visible=False) | |
if verify_pro_status(oauth_token): | |
return gr.update(visible=True), gr.update(visible=False) | |
else: | |
message = ( | |
"## ✨ Exclusive Access for PRO Users\n\n" | |
"Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n" | |
"To unlock this and many other benefits, please consider upgrading your account.\n\n" | |
"### [**Become a PRO Member Today!**](https://huggingface.co/pro)" | |
) | |
return gr.update(visible=False), gr.update(visible=True, value=message) | |
demo.load(control_access, inputs=None, outputs=[main_interface, pro_message]) | |
if __name__ == "__main__": | |
demo.queue(max_size=None, default_concurrency_limit=None) | |
demo.launch() |