import gradio as gr import fal_client import os from typing import Optional, List from huggingface_hub import whoami # It is recommended to create this as a Secret on your Hugging Face Space # For example: FAL_KEY = "fal_key_..." FAL_KEY = os.getenv("FAL_KEY", "") # Set the key for the fal_client if FAL_KEY: fal_client.api_key = FAL_KEY def get_fal_key(): """Checks for the FAL_KEY and raises a Gradio error if it's not set.""" if not FAL_KEY: raise gr.Error("FAL_KEY is not set. Please add it to your Hugging Face Space secrets.") def verify_pro_status(token: Optional[gr.OAuthToken]) -> bool: """Verifies if the user is a Hugging Face PRO user using their token.""" if not token: return False try: user_info = whoami(token=token.token) return user_info.get("isPro", False) except Exception as e: print(f"Could not verify user's PRO status: {e}") return False # --- Backend Generation Functions --- def run_single_image_logic(prompt: str, image: Optional[str] = None) -> List[str]: """Handles text-to-image or single image-to-image and returns a list.""" get_fal_key() if image: image_url = fal_client.upload_file(image) result = fal_client.run( "fal-ai/nano-banana/edit", arguments={"prompt": prompt, "image_url": image_url}, ) else: result = fal_client.run( "fal-ai/nano-banana", arguments={"prompt": prompt} ) return [result["images"][0]["url"]] def run_multi_image_logic(prompt: str, images: List[str]) -> List[str]: """Handles multi-image editing.""" get_fal_key() if not images: raise gr.Error("Please upload at least one image in the 'Multiple Images' tab.") output_images = [] for image_path in images: image_url = fal_client.upload_file(image_path) result = fal_client.run( "fal-ai/nano-banana/edit", arguments={"prompt": prompt, "image_url": image_url}, ) output_images.append(result["images"][0]["url"]) return output_images # --- Gradio App UI --- with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# Nano Banana for PROs") gr.Markdown("Hugging Face PRO users can use Google's Nano Banana (Gemini 2.5 Flash Image Preview) on this Space. [Subscribe to PRO](https://huggingface.co/pro)") login_button = gr.LoginButton() pro_message = gr.Markdown(visible=False) main_interface = gr.Column(visible=False) with main_interface: gr.Markdown("## Welcome, PRO User!") with gr.Row(): # LEFT COLUMN: Inputs with gr.Column(scale=1): prompt_input = gr.Textbox( label="Prompt", placeholder="A delicious looking pizza" ) active_tab_state = gr.State(value="single") with gr.Tabs() as tabs: with gr.TabItem("Single Image", id="single") as single_tab: image_input = gr.Image( type="filepath", label="Input Image (Optional for text-to-image)" ) with gr.TabItem("Multiple Images", id="multiple") as multi_tab: gallery_input = gr.Gallery( label="Input Images", file_types=["image"] ) generate_button = gr.Button("Generate", variant="primary") # RIGHT COLUMN: Outputs with gr.Column(scale=1): output_gallery = gr.Gallery(label="Output") selected_output_image_state = gr.State() use_image_button = gr.Button("♻️ Use Generated Image for Next Edit") # --- Event Handlers --- def unified_generator( prompt: str, single_image: Optional[str], multi_images: Optional[List[str]], active_tab: str, oauth_token: Optional[gr.OAuthToken] = None, ) -> List[str]: if not verify_pro_status(oauth_token): raise gr.Error("Access Denied. This service is for PRO users only.") if active_tab == "multiple" and multi_images: return run_multi_image_logic(prompt, multi_images) else: return run_single_image_logic(prompt, single_image) single_tab.select(lambda: "single", None, active_tab_state) multi_tab.select(lambda: "multiple", None, active_tab_state) generate_button.click( unified_generator, inputs=[prompt_input, image_input, gallery_input, active_tab_state, login_button], outputs=[output_gallery], ) # New handlers for the continuous editing loop def store_selected_image(evt: gr.SelectData): """When an image is selected in the output gallery, store its path in state.""" return evt.value['image'] def reuse_output_image(selected_image_path): """ Takes the path from state and sends it to the single image input. Also forces the UI to switch to the "Single Image" tab. """ if not selected_image_path: gr.Warning("Please select an image from the output gallery first!") return None, gr.update() # Output 1: The image path for the gr.Image component # Output 2: The ID of the tab to select for the gr.Tabs component return selected_image_path, "single" output_gallery.select(store_selected_image, None, selected_output_image_state) use_image_button.click( reuse_output_image, inputs=[selected_output_image_state], outputs=[image_input, tabs] ) # --- Access Control Logic --- def control_access( profile: Optional[gr.OAuthProfile] = None, oauth_token: Optional[gr.OAuthToken] = None ): if not profile: return gr.update(visible=False), gr.update(visible=False) if verify_pro_status(oauth_token): return gr.update(visible=True), gr.update(visible=False) else: message = ( "## ✨ Exclusive Access for PRO Users\n\n" "Thank you for your interest! This feature is available exclusively for our Hugging Face **PRO** members.\n\n" "To unlock this and many other benefits, please consider upgrading your account.\n\n" "### [**Become a PRO Member Today!**](https://huggingface.co/pro)" ) return gr.update(visible=False), gr.update(visible=True, value=message) demo.load(control_access, inputs=None, outputs=[main_interface, pro_message]) if __name__ == "__main__": demo.launch()