Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	File size: 30,757 Bytes
			
			| 0fd2f06 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 | # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from einops import repeat
from .attention import flash_attention
__all__ = ['WanModel']
def sinusoidal_embedding_1d(dim, position):
    # preprocess
    assert dim % 2 == 0
    half = dim // 2
    position = position.type(torch.float64)
    # calculation
    sinusoid = torch.outer(
        position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
    x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
    return x
# @amp.autocast(enabled=False)
def rope_params(max_seq_len, dim, theta=10000):
    assert dim % 2 == 0
    freqs = torch.outer(
        torch.arange(max_seq_len),
        1.0 / torch.pow(theta,
                        torch.arange(0, dim, 2).to(torch.float64).div(dim)))
    freqs = torch.polar(torch.ones_like(freqs), freqs)
    return freqs
# @amp.autocast(enabled=False)
def rope_apply(x, grid_sizes, freqs):
    n, c = x.size(2), x.size(3) // 2
    # split freqs
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
    # loop over samples
    output = []
    for i, (f, h, w) in enumerate(grid_sizes.tolist()):
        seq_len = f * h * w
        # precompute multipliers
        x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape(
            seq_len, n, -1, 2))
        freqs_i = torch.cat([
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
        ],
            dim=-1).reshape(seq_len, 1, -1)
        # apply rotary embedding
        x_i = torch.view_as_real(x_i * freqs_i).flatten(2)
        x_i = torch.cat([x_i, x[i, seq_len:]])
        # append to collection
        output.append(x_i)
    return torch.stack(output).type_as(x)
class WanRMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.dim = dim
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))
    def forward(self, x):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
        """
        return self._norm(x.float()).type_as(x) * self.weight
    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
class WanLayerNorm(nn.LayerNorm):
    def __init__(self, dim, eps=1e-6, elementwise_affine=False):
        super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
    def forward(self, x):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
        """
        return super().forward(x).type_as(x)
class WanSelfAttention(nn.Module):
    def __init__(self,
                 dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 eps=1e-6):
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.eps = eps
        # layers
        self.q = nn.Linear(dim, dim)
        self.k = nn.Linear(dim, dim)
        self.v = nn.Linear(dim, dim)
        self.o = nn.Linear(dim, dim)
        self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
        self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
    def forward(self, x, seq_lens, grid_sizes, freqs):
        r"""
        Args:
            x(Tensor): Shape [B, L, num_heads, C / num_heads]
            seq_lens(Tensor): Shape [B]
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
        # query, key, value function
        def qkv_fn(x):
            q = self.norm_q(self.q(x)).view(b, s, n, d)
            k = self.norm_k(self.k(x)).view(b, s, n, d)
            v = self.v(x).view(b, s, n, d)
            return q, k, v
        q, k, v = qkv_fn(x)
        x = flash_attention(
            q=rope_apply(q, grid_sizes, freqs),
            k=rope_apply(k, grid_sizes, freqs),
            v=v,
            k_lens=seq_lens,
            window_size=self.window_size)
        # output
        x = x.flatten(2)
        x = self.o(x)
        return x
class WanT2VCrossAttention(WanSelfAttention):
    def forward(self, x, context, context_lens, crossattn_cache=None):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
            context_lens(Tensor): Shape [B]
            crossattn_cache (List[dict], *optional*): Contains the cached key and value tensors for context embedding.
        """
        b, n, d = x.size(0), self.num_heads, self.head_dim
        # compute query, key, value
        q = self.norm_q(self.q(x)).view(b, -1, n, d)
        if crossattn_cache is not None:
            if not crossattn_cache["is_init"]:
                crossattn_cache["is_init"] = True
                k = self.norm_k(self.k(context)).view(b, -1, n, d)
                v = self.v(context).view(b, -1, n, d)
                crossattn_cache["k"] = k
                crossattn_cache["v"] = v
            else:
                k = crossattn_cache["k"]
                v = crossattn_cache["v"]
        else:
            k = self.norm_k(self.k(context)).view(b, -1, n, d)
            v = self.v(context).view(b, -1, n, d)
        # compute attention
        x = flash_attention(q, k, v, k_lens=context_lens)
        # output
        x = x.flatten(2)
        x = self.o(x)
        return x
class WanGanCrossAttention(WanSelfAttention):
    def forward(self, x, context, crossattn_cache=None):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
            context_lens(Tensor): Shape [B]
            crossattn_cache (List[dict], *optional*): Contains the cached key and value tensors for context embedding.
        """
        b, n, d = x.size(0), self.num_heads, self.head_dim
        # compute query, key, value
        qq = self.norm_q(self.q(context)).view(b, 1, -1, d)
        kk = self.norm_k(self.k(x)).view(b, -1, n, d)
        vv = self.v(x).view(b, -1, n, d)
        # compute attention
        x = flash_attention(qq, kk, vv)
        # output
        x = x.flatten(2)
        x = self.o(x)
        return x
class WanI2VCrossAttention(WanSelfAttention):
    def __init__(self,
                 dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 eps=1e-6):
        super().__init__(dim, num_heads, window_size, qk_norm, eps)
        self.k_img = nn.Linear(dim, dim)
        self.v_img = nn.Linear(dim, dim)
        # self.alpha = nn.Parameter(torch.zeros((1, )))
        self.norm_k_img = WanRMSNorm(
            dim, eps=eps) if qk_norm else nn.Identity()
    def forward(self, x, context, context_lens):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
            context_lens(Tensor): Shape [B]
        """
        context_img = context[:, :257]
        context = context[:, 257:]
        b, n, d = x.size(0), self.num_heads, self.head_dim
        # compute query, key, value
        q = self.norm_q(self.q(x)).view(b, -1, n, d)
        k = self.norm_k(self.k(context)).view(b, -1, n, d)
        v = self.v(context).view(b, -1, n, d)
        k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
        v_img = self.v_img(context_img).view(b, -1, n, d)
        img_x = flash_attention(q, k_img, v_img, k_lens=None)
        # compute attention
        x = flash_attention(q, k, v, k_lens=context_lens)
        # output
        x = x.flatten(2)
        img_x = img_x.flatten(2)
        x = x + img_x
        x = self.o(x)
        return x
WAN_CROSSATTENTION_CLASSES = {
    't2v_cross_attn': WanT2VCrossAttention,
    'i2v_cross_attn': WanI2VCrossAttention,
}
class WanAttentionBlock(nn.Module):
    def __init__(self,
                 cross_attn_type,
                 dim,
                 ffn_dim,
                 num_heads,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=False,
                 eps=1e-6):
        super().__init__()
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps
        # layers
        self.norm1 = WanLayerNorm(dim, eps)
        self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
                                          eps)
        self.norm3 = WanLayerNorm(
            dim, eps,
            elementwise_affine=True) if cross_attn_norm else nn.Identity()
        self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
                                                                      num_heads,
                                                                      (-1, -1),
                                                                      qk_norm,
                                                                      eps)
        self.norm2 = WanLayerNorm(dim, eps)
        self.ffn = nn.Sequential(
            nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
            nn.Linear(ffn_dim, dim))
        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
    def forward(
        self,
        x,
        e,
        seq_lens,
        grid_sizes,
        freqs,
        context,
        context_lens,
    ):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
            e(Tensor): Shape [B, 6, C]
            seq_lens(Tensor): Shape [B], length of each sequence in batch
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        # assert e.dtype == torch.float32
        # with amp.autocast(dtype=torch.float32):
        e = (self.modulation + e).chunk(6, dim=1)
        # assert e[0].dtype == torch.float32
        # self-attention
        y = self.self_attn(
            self.norm1(x) * (1 + e[1]) + e[0], seq_lens, grid_sizes,
            freqs)
        # with amp.autocast(dtype=torch.float32):
        x = x + y * e[2]
        # cross-attention & ffn function
        def cross_attn_ffn(x, context, context_lens, e):
            x = x + self.cross_attn(self.norm3(x), context, context_lens)
            y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
            # with amp.autocast(dtype=torch.float32):
            x = x + y * e[5]
            return x
        x = cross_attn_ffn(x, context, context_lens, e)
        return x
class GanAttentionBlock(nn.Module):
    def __init__(self,
                 dim=1536,
                 ffn_dim=8192,
                 num_heads=12,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=True,
                 eps=1e-6):
        super().__init__()
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps
        # layers
        # self.norm1 = WanLayerNorm(dim, eps)
        # self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
        #   eps)
        self.norm3 = WanLayerNorm(
            dim, eps,
            elementwise_affine=True) if cross_attn_norm else nn.Identity()
        self.norm2 = WanLayerNorm(dim, eps)
        self.ffn = nn.Sequential(
            nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'),
            nn.Linear(ffn_dim, dim))
        self.cross_attn = WanGanCrossAttention(dim, num_heads,
                                               (-1, -1),
                                               qk_norm,
                                               eps)
        # modulation
        # self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
    def forward(
        self,
        x,
        context,
        # seq_lens,
        # grid_sizes,
        # freqs,
        # context,
        # context_lens,
    ):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
            e(Tensor): Shape [B, 6, C]
            seq_lens(Tensor): Shape [B], length of each sequence in batch
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        # assert e.dtype == torch.float32
        # with amp.autocast(dtype=torch.float32):
        # e = (self.modulation + e).chunk(6, dim=1)
        # assert e[0].dtype == torch.float32
        # # self-attention
        # y = self.self_attn(
        #     self.norm1(x) * (1 + e[1]) + e[0], seq_lens, grid_sizes,
        #     freqs)
        # # with amp.autocast(dtype=torch.float32):
        # x = x + y * e[2]
        # cross-attention & ffn function
        def cross_attn_ffn(x, context):
            token = context + self.cross_attn(self.norm3(x), context)
            y = self.ffn(self.norm2(token)) + token  # * (1 + e[4]) + e[3])
            # with amp.autocast(dtype=torch.float32):
            # x = x + y * e[5]
            return y
        x = cross_attn_ffn(x, context)
        return x
class Head(nn.Module):
    def __init__(self, dim, out_dim, patch_size, eps=1e-6):
        super().__init__()
        self.dim = dim
        self.out_dim = out_dim
        self.patch_size = patch_size
        self.eps = eps
        # layers
        out_dim = math.prod(patch_size) * out_dim
        self.norm = WanLayerNorm(dim, eps)
        self.head = nn.Linear(dim, out_dim)
        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
    def forward(self, x, e):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            e(Tensor): Shape [B, C]
        """
        # assert e.dtype == torch.float32
        # with amp.autocast(dtype=torch.float32):
        e = (self.modulation + e.unsqueeze(1)).chunk(2, dim=1)
        x = (self.head(self.norm(x) * (1 + e[1]) + e[0]))
        return x
class MLPProj(torch.nn.Module):
    def __init__(self, in_dim, out_dim):
        super().__init__()
        self.proj = torch.nn.Sequential(
            torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim),
            torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim),
            torch.nn.LayerNorm(out_dim))
    def forward(self, image_embeds):
        clip_extra_context_tokens = self.proj(image_embeds)
        return clip_extra_context_tokens
class RegisterTokens(nn.Module):
    def __init__(self, num_registers: int, dim: int):
        super().__init__()
        self.register_tokens = nn.Parameter(torch.randn(num_registers, dim) * 0.02)
        self.rms_norm = WanRMSNorm(dim, eps=1e-6)
    def forward(self):
        return self.rms_norm(self.register_tokens)
    def reset_parameters(self):
        nn.init.normal_(self.register_tokens, std=0.02)
class WanModel(ModelMixin, ConfigMixin):
    r"""
    Wan diffusion backbone supporting both text-to-video and image-to-video.
    """
    ignore_for_config = [
        'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size'
    ]
    _no_split_modules = ['WanAttentionBlock']
    _supports_gradient_checkpointing = True
    @register_to_config
    def __init__(self,
                 model_type='t2v',
                 patch_size=(1, 2, 2),
                 text_len=512,
                 in_dim=16,
                 dim=2048,
                 ffn_dim=8192,
                 freq_dim=256,
                 text_dim=4096,
                 out_dim=16,
                 num_heads=16,
                 num_layers=32,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=True,
                 eps=1e-6):
        r"""
        Initialize the diffusion model backbone.
        Args:
            model_type (`str`, *optional*, defaults to 't2v'):
                Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
            patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
                3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
            text_len (`int`, *optional*, defaults to 512):
                Fixed length for text embeddings
            in_dim (`int`, *optional*, defaults to 16):
                Input video channels (C_in)
            dim (`int`, *optional*, defaults to 2048):
                Hidden dimension of the transformer
            ffn_dim (`int`, *optional*, defaults to 8192):
                Intermediate dimension in feed-forward network
            freq_dim (`int`, *optional*, defaults to 256):
                Dimension for sinusoidal time embeddings
            text_dim (`int`, *optional*, defaults to 4096):
                Input dimension for text embeddings
            out_dim (`int`, *optional*, defaults to 16):
                Output video channels (C_out)
            num_heads (`int`, *optional*, defaults to 16):
                Number of attention heads
            num_layers (`int`, *optional*, defaults to 32):
                Number of transformer blocks
            window_size (`tuple`, *optional*, defaults to (-1, -1)):
                Window size for local attention (-1 indicates global attention)
            qk_norm (`bool`, *optional*, defaults to True):
                Enable query/key normalization
            cross_attn_norm (`bool`, *optional*, defaults to False):
                Enable cross-attention normalization
            eps (`float`, *optional*, defaults to 1e-6):
                Epsilon value for normalization layers
        """
        super().__init__()
        assert model_type in ['t2v', 'i2v']
        self.model_type = model_type
        self.patch_size = patch_size
        self.text_len = text_len
        self.in_dim = in_dim
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.freq_dim = freq_dim
        self.text_dim = text_dim
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps
        self.local_attn_size = 21
        # embeddings
        self.patch_embedding = nn.Conv3d(
            in_dim, dim, kernel_size=patch_size, stride=patch_size)
        self.text_embedding = nn.Sequential(
            nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'),
            nn.Linear(dim, dim))
        self.time_embedding = nn.Sequential(
            nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
        self.time_projection = nn.Sequential(
            nn.SiLU(), nn.Linear(dim, dim * 6))
        # blocks
        cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
        self.blocks = nn.ModuleList([
            WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
                              window_size, qk_norm, cross_attn_norm, eps)
            for _ in range(num_layers)
        ])
        # head
        self.head = Head(dim, out_dim, patch_size, eps)
        # buffers (don't use register_buffer otherwise dtype will be changed in to())
        assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
        d = dim // num_heads
        self.freqs = torch.cat([
            rope_params(1024, d - 4 * (d // 6)),
            rope_params(1024, 2 * (d // 6)),
            rope_params(1024, 2 * (d // 6))
        ],
            dim=1)
        if model_type == 'i2v':
            self.img_emb = MLPProj(1280, dim)
        # initialize weights
        self.init_weights()
        self.gradient_checkpointing = False
    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value
    def forward(
        self,
        *args,
        **kwargs
    ):
        # if kwargs.get('classify_mode', False) is True:
        # kwargs.pop('classify_mode')
        # return self._forward_classify(*args, **kwargs)
        # else:
        return self._forward(*args, **kwargs)
    def _forward(
        self,
        x,
        t,
        context,
        seq_len,
        classify_mode=False,
        concat_time_embeddings=False,
        register_tokens=None,
        cls_pred_branch=None,
        gan_ca_blocks=None,
        clip_fea=None,
        y=None,
    ):
        r"""
        Forward pass through the diffusion model
        Args:
            x (List[Tensor]):
                List of input video tensors, each with shape [C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x
        Returns:
            List[Tensor]:
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
        """
        if self.model_type == 'i2v':
            assert clip_fea is not None and y is not None
        # params
        device = self.patch_embedding.weight.device
        if self.freqs.device != device:
            self.freqs = self.freqs.to(device)
        if y is not None:
            x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
        # embeddings
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
        grid_sizes = torch.stack(
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
        x = [u.flatten(2).transpose(1, 2) for u in x]
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
        assert seq_lens.max() <= seq_len
        x = torch.cat([
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
                      dim=1) for u in x
        ])
        # time embeddings
        # with amp.autocast(dtype=torch.float32):
        e = self.time_embedding(
            sinusoidal_embedding_1d(self.freq_dim, t).type_as(x))
        e0 = self.time_projection(e).unflatten(1, (6, self.dim))
        # assert e.dtype == torch.float32 and e0.dtype == torch.float32
        # context
        context_lens = None
        context = self.text_embedding(
            torch.stack([
                torch.cat(
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
                for u in context
            ]))
        if clip_fea is not None:
            context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
            context = torch.concat([context_clip, context], dim=1)
        # arguments
        kwargs = dict(
            e=e0,
            seq_lens=seq_lens,
            grid_sizes=grid_sizes,
            freqs=self.freqs,
            context=context,
            context_lens=context_lens)
        def create_custom_forward(module):
            def custom_forward(*inputs, **kwargs):
                return module(*inputs, **kwargs)
            return custom_forward
        # TODO: Tune the number of blocks for feature extraction
        final_x = None
        if classify_mode:
            assert register_tokens is not None
            assert gan_ca_blocks is not None
            assert cls_pred_branch is not None
            final_x = []
            registers = repeat(register_tokens(), "n d -> b n d", b=x.shape[0])
            # x = torch.cat([registers, x], dim=1)
        gan_idx = 0
        for ii, block in enumerate(self.blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                x = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    x, **kwargs,
                    use_reentrant=False,
                )
            else:
                x = block(x, **kwargs)
            if classify_mode and ii in [13, 21, 29]:
                gan_token = registers[:, gan_idx: gan_idx + 1]
                final_x.append(gan_ca_blocks[gan_idx](x, gan_token))
                gan_idx += 1
        if classify_mode:
            final_x = torch.cat(final_x, dim=1)
            if concat_time_embeddings:
                final_x = cls_pred_branch(torch.cat([final_x, 10 * e[:, None, :]], dim=1).view(final_x.shape[0], -1))
            else:
                final_x = cls_pred_branch(final_x.view(final_x.shape[0], -1))
        # head
        x = self.head(x, e)
        # unpatchify
        x = self.unpatchify(x, grid_sizes)
        if classify_mode:
            return torch.stack(x), final_x
        return torch.stack(x)
    def _forward_classify(
        self,
        x,
        t,
        context,
        seq_len,
        register_tokens,
        cls_pred_branch,
        clip_fea=None,
        y=None,
    ):
        r"""
        Feature extraction through the diffusion model
        Args:
            x (List[Tensor]):
                List of input video tensors, each with shape [C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x
        Returns:
            List[Tensor]:
                List of video features with original input shapes [C_block, F, H / 8, W / 8]
        """
        if self.model_type == 'i2v':
            assert clip_fea is not None and y is not None
        # params
        device = self.patch_embedding.weight.device
        if self.freqs.device != device:
            self.freqs = self.freqs.to(device)
        if y is not None:
            x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
        # embeddings
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
        grid_sizes = torch.stack(
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
        x = [u.flatten(2).transpose(1, 2) for u in x]
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
        assert seq_lens.max() <= seq_len
        x = torch.cat([
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
                      dim=1) for u in x
        ])
        # time embeddings
        # with amp.autocast(dtype=torch.float32):
        e = self.time_embedding(
            sinusoidal_embedding_1d(self.freq_dim, t).type_as(x))
        e0 = self.time_projection(e).unflatten(1, (6, self.dim))
        # assert e.dtype == torch.float32 and e0.dtype == torch.float32
        # context
        context_lens = None
        context = self.text_embedding(
            torch.stack([
                torch.cat(
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
                for u in context
            ]))
        if clip_fea is not None:
            context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
            context = torch.concat([context_clip, context], dim=1)
        # arguments
        kwargs = dict(
            e=e0,
            seq_lens=seq_lens,
            grid_sizes=grid_sizes,
            freqs=self.freqs,
            context=context,
            context_lens=context_lens)
        def create_custom_forward(module):
            def custom_forward(*inputs, **kwargs):
                return module(*inputs, **kwargs)
            return custom_forward
        # TODO: Tune the number of blocks for feature extraction
        for block in self.blocks[:16]:
            if torch.is_grad_enabled() and self.gradient_checkpointing:
                x = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    x, **kwargs,
                    use_reentrant=False,
                )
            else:
                x = block(x, **kwargs)
        # unpatchify
        x = self.unpatchify(x, grid_sizes, c=self.dim // 4)
        return torch.stack(x)
    def unpatchify(self, x, grid_sizes, c=None):
        r"""
        Reconstruct video tensors from patch embeddings.
        Args:
            x (List[Tensor]):
                List of patchified features, each with shape [L, C_out * prod(patch_size)]
            grid_sizes (Tensor):
                Original spatial-temporal grid dimensions before patching,
                    shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
        Returns:
            List[Tensor]:
                Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
        """
        c = self.out_dim if c is None else c
        out = []
        for u, v in zip(x, grid_sizes.tolist()):
            u = u[:math.prod(v)].view(*v, *self.patch_size, c)
            u = torch.einsum('fhwpqrc->cfphqwr', u)
            u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)])
            out.append(u)
        return out
    def init_weights(self):
        r"""
        Initialize model parameters using Xavier initialization.
        """
        # basic init
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
        # init embeddings
        nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
        for m in self.text_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=.02)
        for m in self.time_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=.02)
        # init output layer
        nn.init.zeros_(self.head.head.weight)
 |