Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
9ca6c30
1
Parent(s):
a7729a1
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,73 +1,27 @@
|
|
| 1 |
-
import
|
|
|
|
| 2 |
import os
|
| 3 |
from glob import glob
|
| 4 |
from pathlib import Path
|
| 5 |
from typing import Optional
|
| 6 |
|
| 7 |
-
import
|
| 8 |
-
import
|
| 9 |
-
import torch
|
| 10 |
-
from einops import rearrange, repeat
|
| 11 |
-
from fire import Fire
|
| 12 |
-
from omegaconf import OmegaConf
|
| 13 |
from PIL import Image
|
| 14 |
-
from torchvision.transforms import ToTensor
|
| 15 |
|
| 16 |
-
from scripts.util.detection.nsfw_and_watermark_dectection import \
|
| 17 |
-
DeepFloydDataFiltering
|
| 18 |
-
from sgm.inference.helpers import embed_watermark
|
| 19 |
-
from sgm.util import default, instantiate_from_config
|
| 20 |
|
| 21 |
-
import gradio as gr
|
| 22 |
import uuid
|
| 23 |
import random
|
| 24 |
from huggingface_hub import hf_hub_download
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
version = "svd_xt"
|
| 29 |
-
device = "cuda"
|
| 30 |
max_64_bit_int = 2**63 - 1
|
| 31 |
|
| 32 |
-
def load_model(
|
| 33 |
-
config: str,
|
| 34 |
-
device: str,
|
| 35 |
-
num_frames: int,
|
| 36 |
-
num_steps: int,
|
| 37 |
-
):
|
| 38 |
-
config = OmegaConf.load(config)
|
| 39 |
-
if device == "cuda":
|
| 40 |
-
config.model.params.conditioner_config.params.emb_models[
|
| 41 |
-
0
|
| 42 |
-
].params.open_clip_embedding_config.params.init_device = device
|
| 43 |
-
|
| 44 |
-
config.model.params.sampler_config.params.num_steps = num_steps
|
| 45 |
-
config.model.params.sampler_config.params.guider_config.params.num_frames = (
|
| 46 |
-
num_frames
|
| 47 |
-
)
|
| 48 |
-
if device == "cuda":
|
| 49 |
-
with torch.device(device):
|
| 50 |
-
model = instantiate_from_config(config.model).to(device).eval()
|
| 51 |
-
else:
|
| 52 |
-
model = instantiate_from_config(config.model).to(device).eval()
|
| 53 |
-
|
| 54 |
-
filter = DeepFloydDataFiltering(verbose=False, device=device)
|
| 55 |
-
return model, filter
|
| 56 |
-
|
| 57 |
-
if version == "svd_xt":
|
| 58 |
-
num_frames = 25
|
| 59 |
-
num_steps = 30
|
| 60 |
-
model_config = "scripts/sampling/configs/svd_xt.yaml"
|
| 61 |
-
else:
|
| 62 |
-
raise ValueError(f"Version {version} does not exist.")
|
| 63 |
-
|
| 64 |
-
model, filter = load_model(
|
| 65 |
-
model_config,
|
| 66 |
-
device,
|
| 67 |
-
num_frames,
|
| 68 |
-
num_steps,
|
| 69 |
-
)
|
| 70 |
-
|
| 71 |
def sample(
|
| 72 |
image: Image,
|
| 73 |
seed: Optional[int] = None,
|
|
@@ -76,168 +30,28 @@ def sample(
|
|
| 76 |
fps_id: int = 6,
|
| 77 |
version: str = "svd_xt",
|
| 78 |
cond_aug: float = 0.02,
|
| 79 |
-
decoding_t: int =
|
| 80 |
device: str = "cuda",
|
| 81 |
output_folder: str = "outputs",
|
| 82 |
-
progress=gr.Progress(track_tqdm=True)
|
| 83 |
):
|
|
|
|
|
|
|
|
|
|
| 84 |
if(randomize_seed):
|
| 85 |
seed = random.randint(0, max_64_bit_int)
|
| 86 |
-
|
| 87 |
-
torch.manual_seed(seed)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
image = ToTensor()(image)
|
| 101 |
-
image = image * 2.0 - 1.0
|
| 102 |
-
image = image.unsqueeze(0).to(device)
|
| 103 |
-
H, W = image.shape[2:]
|
| 104 |
-
assert image.shape[1] == 3
|
| 105 |
-
F = 8
|
| 106 |
-
C = 4
|
| 107 |
-
shape = (num_frames, C, H // F, W // F)
|
| 108 |
-
if (H, W) != (576, 1024):
|
| 109 |
-
print(
|
| 110 |
-
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
| 111 |
-
)
|
| 112 |
-
if motion_bucket_id > 255:
|
| 113 |
-
print(
|
| 114 |
-
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
| 115 |
-
)
|
| 116 |
-
|
| 117 |
-
if fps_id < 5:
|
| 118 |
-
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
| 119 |
-
|
| 120 |
-
if fps_id > 30:
|
| 121 |
-
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
| 122 |
-
|
| 123 |
-
value_dict = {}
|
| 124 |
-
value_dict["motion_bucket_id"] = motion_bucket_id
|
| 125 |
-
value_dict["fps_id"] = fps_id
|
| 126 |
-
value_dict["cond_aug"] = cond_aug
|
| 127 |
-
value_dict["cond_frames_without_noise"] = image
|
| 128 |
-
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
| 129 |
-
value_dict["cond_aug"] = cond_aug
|
| 130 |
-
|
| 131 |
-
with torch.no_grad():
|
| 132 |
-
with torch.autocast(device):
|
| 133 |
-
batch, batch_uc = get_batch(
|
| 134 |
-
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
| 135 |
-
value_dict,
|
| 136 |
-
[1, num_frames],
|
| 137 |
-
T=num_frames,
|
| 138 |
-
device=device,
|
| 139 |
-
)
|
| 140 |
-
c, uc = model.conditioner.get_unconditional_conditioning(
|
| 141 |
-
batch,
|
| 142 |
-
batch_uc=batch_uc,
|
| 143 |
-
force_uc_zero_embeddings=[
|
| 144 |
-
"cond_frames",
|
| 145 |
-
"cond_frames_without_noise",
|
| 146 |
-
],
|
| 147 |
-
)
|
| 148 |
-
|
| 149 |
-
for k in ["crossattn", "concat"]:
|
| 150 |
-
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
| 151 |
-
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
| 152 |
-
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
| 153 |
-
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
| 154 |
-
|
| 155 |
-
randn = torch.randn(shape, device=device)
|
| 156 |
-
|
| 157 |
-
additional_model_inputs = {}
|
| 158 |
-
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
| 159 |
-
2, num_frames
|
| 160 |
-
).to(device)
|
| 161 |
-
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
| 162 |
-
|
| 163 |
-
def denoiser(input, sigma, c):
|
| 164 |
-
return model.denoiser(
|
| 165 |
-
model.model, input, sigma, c, **additional_model_inputs
|
| 166 |
-
)
|
| 167 |
-
|
| 168 |
-
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
| 169 |
-
model.en_and_decode_n_samples_a_time = decoding_t
|
| 170 |
-
samples_x = model.decode_first_stage(samples_z)
|
| 171 |
-
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
| 172 |
-
|
| 173 |
-
os.makedirs(output_folder, exist_ok=True)
|
| 174 |
-
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 175 |
-
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 176 |
-
writer = cv2.VideoWriter(
|
| 177 |
-
video_path,
|
| 178 |
-
cv2.VideoWriter_fourcc(*"mp4v"),
|
| 179 |
-
fps_id + 1,
|
| 180 |
-
(samples.shape[-1], samples.shape[-2]),
|
| 181 |
-
)
|
| 182 |
-
|
| 183 |
-
samples = embed_watermark(samples)
|
| 184 |
-
samples = filter(samples)
|
| 185 |
-
vid = (
|
| 186 |
-
(rearrange(samples, "t c h w -> t h w c") * 255)
|
| 187 |
-
.cpu()
|
| 188 |
-
.numpy()
|
| 189 |
-
.astype(np.uint8)
|
| 190 |
-
)
|
| 191 |
-
for frame in vid:
|
| 192 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
| 193 |
-
writer.write(frame)
|
| 194 |
-
writer.release()
|
| 195 |
return video_path, seed
|
| 196 |
|
| 197 |
-
def get_unique_embedder_keys_from_conditioner(conditioner):
|
| 198 |
-
return list(set([x.input_key for x in conditioner.embedders]))
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
def get_batch(keys, value_dict, N, T, device):
|
| 202 |
-
batch = {}
|
| 203 |
-
batch_uc = {}
|
| 204 |
-
|
| 205 |
-
for key in keys:
|
| 206 |
-
if key == "fps_id":
|
| 207 |
-
batch[key] = (
|
| 208 |
-
torch.tensor([value_dict["fps_id"]])
|
| 209 |
-
.to(device)
|
| 210 |
-
.repeat(int(math.prod(N)))
|
| 211 |
-
)
|
| 212 |
-
elif key == "motion_bucket_id":
|
| 213 |
-
batch[key] = (
|
| 214 |
-
torch.tensor([value_dict["motion_bucket_id"]])
|
| 215 |
-
.to(device)
|
| 216 |
-
.repeat(int(math.prod(N)))
|
| 217 |
-
)
|
| 218 |
-
elif key == "cond_aug":
|
| 219 |
-
batch[key] = repeat(
|
| 220 |
-
torch.tensor([value_dict["cond_aug"]]).to(device),
|
| 221 |
-
"1 -> b",
|
| 222 |
-
b=math.prod(N),
|
| 223 |
-
)
|
| 224 |
-
elif key == "cond_frames":
|
| 225 |
-
batch[key] = repeat(value_dict["cond_frames"], "1 ... -> b ...", b=N[0])
|
| 226 |
-
elif key == "cond_frames_without_noise":
|
| 227 |
-
batch[key] = repeat(
|
| 228 |
-
value_dict["cond_frames_without_noise"], "1 ... -> b ...", b=N[0]
|
| 229 |
-
)
|
| 230 |
-
else:
|
| 231 |
-
batch[key] = value_dict[key]
|
| 232 |
-
|
| 233 |
-
if T is not None:
|
| 234 |
-
batch["num_video_frames"] = T
|
| 235 |
-
|
| 236 |
-
for key in batch.keys():
|
| 237 |
-
if key not in batch_uc and isinstance(batch[key], torch.Tensor):
|
| 238 |
-
batch_uc[key] = torch.clone(batch[key])
|
| 239 |
-
return batch, batch_uc
|
| 240 |
-
|
| 241 |
def resize_image(image, output_size=(1024, 576)):
|
| 242 |
# Calculate aspect ratios
|
| 243 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
import os
|
| 4 |
from glob import glob
|
| 5 |
from pathlib import Path
|
| 6 |
from typing import Optional
|
| 7 |
|
| 8 |
+
from diffusers import StableVideoDiffusionPipeline
|
| 9 |
+
from diffusers.utils import load_image, export_to_video
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from PIL import Image
|
|
|
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
|
|
|
| 13 |
import uuid
|
| 14 |
import random
|
| 15 |
from huggingface_hub import hf_hub_download
|
| 16 |
|
| 17 |
+
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 18 |
+
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16"
|
| 19 |
+
)
|
| 20 |
+
pipe.to("cuda")
|
| 21 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 22 |
|
|
|
|
|
|
|
| 23 |
max_64_bit_int = 2**63 - 1
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def sample(
|
| 26 |
image: Image,
|
| 27 |
seed: Optional[int] = None,
|
|
|
|
| 30 |
fps_id: int = 6,
|
| 31 |
version: str = "svd_xt",
|
| 32 |
cond_aug: float = 0.02,
|
| 33 |
+
decoding_t: int = 4, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
| 34 |
device: str = "cuda",
|
| 35 |
output_folder: str = "outputs",
|
| 36 |
+
#progress=gr.Progress(track_tqdm=True)
|
| 37 |
):
|
| 38 |
+
if image.mode == "RGBA":
|
| 39 |
+
image = image.convert("RGB")
|
| 40 |
+
|
| 41 |
if(randomize_seed):
|
| 42 |
seed = random.randint(0, max_64_bit_int)
|
| 43 |
+
generator = torch.manual_seed(seed)
|
|
|
|
| 44 |
|
| 45 |
+
os.makedirs(output_folder, exist_ok=True)
|
| 46 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 47 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 48 |
|
| 49 |
+
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1).frames[0]
|
| 50 |
+
export_to_video(frames, video_path, fps=fps_id)
|
| 51 |
+
torch.manual_seed(seed)
|
| 52 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
return video_path, seed
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def resize_image(image, output_size=(1024, 576)):
|
| 56 |
# Calculate aspect ratios
|
| 57 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|