File size: 11,221 Bytes
fb0638e
10d1560
 
80784a2
10d1560
1633ad5
e589a0c
 
 
 
 
5f364b5
e589a0c
12d6cf5
e589a0c
7577271
1633ad5
e589a0c
f4cf641
afdfe21
 
5f364b5
8268b44
 
f4cf641
8268b44
8249703
8268b44
e589a0c
afdfe21
 
f4cf641
8268b44
1b75f51
f4cf641
e589a0c
c103ac7
8575388
 
8268b44
c103ac7
8268b44
 
1e531a7
 
8268b44
 
 
 
8116465
 
 
30b58cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e589a0c
8116465
 
 
 
f4cf641
8268b44
f4cf641
 
8268b44
 
 
 
 
 
f4cf641
 
e589a0c
12d6cf5
f4cf641
 
 
8268b44
 
f4cf641
 
 
 
e589a0c
f4cf641
afdfe21
54856e7
8116465
e589a0c
 
 
 
 
1e531a7
79ad4c4
a999829
cd1c14b
f4cf641
 
 
8268b44
 
1e531a7
9e90928
8268b44
 
e589a0c
 
 
 
a999829
 
 
 
 
 
 
 
 
 
 
12d6cf5
8268b44
e589a0c
30b58cc
558bf1d
 
 
 
 
 
e589a0c
5f364b5
 
1e531a7
54b40a7
5f364b5
e589a0c
5f364b5
e589a0c
 
 
5f364b5
c103ac7
8268b44
 
 
8575388
e589a0c
8268b44
 
 
f4cf641
 
 
8575388
8268b44
e589a0c
 
1633ad5
 
e589a0c
 
 
 
1633ad5
5f364b5
c103ac7
8268b44
f4cf641
e589a0c
d5cf532
c103ac7
e589a0c
c103ac7
 
8268b44
 
e589a0c
 
f4cf641
 
8268b44
e589a0c
8268b44
8116465
 
1633ad5
e589a0c
 
f4cf641
54b40a7
5f364b5
 
8268b44
e589a0c
 
5f364b5
e589a0c
5f364b5
 
 
f8902bc
 
 
 
 
 
 
 
8268b44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import spaces
import subprocess
# Installing flash_attn
subprocess.run('pip install flash-attn==2.7.4.post1 --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
import time

# --- MODEL LOADING ---
MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"

image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

# --- CONSTANTS ---
MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 

SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81 

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"

class CalculateTime:
    """Context manager to measure execution time of code blocks."""
    
    def __init__(self, description="Operation"):
        self.description = description
        self.elapsed = 0
    
    def __enter__(self):
        self.start = time.perf_counter()
        return self
    
    def __exit__(self, exc_type, exc_val, exc_tb):
        self.end = time.perf_counter()
        self.elapsed = self.end - self.start
        print(f"{self.description} took {self.elapsed:.4f} seconds")


# --- HELPER FUNCTIONS (UNCHANGED) ---
def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                 min_slider_h, max_slider_h,
                                 min_slider_w, max_slider_w,
                                 default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w
    aspect_ratio = orig_h / orig_w
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))
    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    return new_h, new_w

def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error attempting to calculate new dimensions")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

@spaces.GPU(duration=90)
def generate_video(input_image, prompt, height, width, 
                   negative_prompt=default_negative_prompt, duration_seconds = 2,
                   guidance_scale = 1, steps = 4,
                   seed = 42, randomize_seed = False, 
                   # --- NEW RADIAL ATTENTION PARAMS ---
                   pattern="dense", dense_layers=1, dense_timesteps=12, decay_factor=0.2,
                   progress=gr.Progress(track_tqdm=True)):

    from radial_attn.models.wan.inference import replace_wan_attention
    
    if input_image is None:
        raise gr.Error("Please upload an input image.")

    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = int(np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL))
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
    
    # --- APPLY RADIAL ATTENTION PATCH ---
    # This function is called on every generation to ensure the correct settings
    # for either 'dense' or 'radial' attention are applied.
    with CalculateTime("Replace attention"):
        replace_wan_attention(
            pipe=pipe,
            height=target_h,
            width=target_w,
            num_frames=num_frames,
            dense_layers=dense_layers,
            dense_timesteps=dense_timesteps,
            decay_factor=decay_factor,
            sparsity_type=pattern,
        )

    resized_image = input_image.resize((target_w, target_h))

    with CalculateTime("Run Inference"):
        output_frames_list = pipe(
            image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    return video_path, current_seed

# --- GRADIO UI ---
with gr.Blocks() as demo:
    gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA and Radial Attention")
    gr.Markdown("This demo combines the distilled Wan 2.1 I2V model with [Radial Attention](https://github.com/mit-han-lab/radial-attention) for efficient long video generation.")
    
    with gr.Row():
        with gr.Column():
            input_image_component = gr.Image(type="pil", label="Input Image (auto-resized to target H/W)")
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                with gr.Row():
                    height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
                    width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps") 
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=False)
                
                # --- NEW RADIAL ATTENTION UI ---
                with gr.Group():
                    gr.Markdown("### Radial Attention Settings")
                    pattern_input = gr.Radio(["dense", "radial"], value="dense", label="Attention Pattern", info="Select 'radial' to enable sparse attention.")
                    dense_layers_input = gr.Slider(minimum=0, maximum=40, step=1, value=1, label="Dense Layers", info="Num initial layers to keep dense. Default: 1 for ~3s video.")
                    dense_timesteps_input = gr.Slider(minimum=0, maximum=50, step=1, value=12, label="Dense Timesteps", info="Num initial denoising steps to keep dense. Default: 12 for ~3s video.")
                    decay_factor_input = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.2, label="Decay Factor", info="Controls attention window decay. Smaller is sparser. Default: 0.2.")

            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            video_output = gr.Video(label="Generated Video", autoplay=True, interactive=False)

    # Event handlers (unchanged)
    input_image_component.upload(
        fn=handle_image_upload_for_dims_wan,
        inputs=[input_image_component, height_input, width_input],
        outputs=[height_input, width_input]
    )
    
    input_image_component.clear( 
        fn=handle_image_upload_for_dims_wan,
        inputs=[input_image_component, height_input, width_input],
        outputs=[height_input, width_input]
    )
    
    # --- UPDATE UI INPUTS LIST ---
    ui_inputs = [
        input_image_component, prompt_input, height_input, width_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox,
        # Add new radial attention inputs
        pattern_input, dense_layers_input, dense_timesteps_input, decay_factor_input
    ]
    generate_button.click(fn=generate_video, inputs=ui_inputs, outputs=[video_output, seed_input])

    gr.Examples(
        examples=[ 
            ["peng.png", "a penguin playfully dancing in the snow, Antarctica", 896, 512],
            ["forg.jpg", "the frog jumps around", 448, 832],
        ],
        inputs=[input_image_component, prompt_input, height_input, width_input], outputs=[video_output, seed_input], fn=generate_video, cache_examples="lazy"
    )

if __name__ == "__main__":
    import multiprocessing as mp
    try:
        # 'fork' is the default on Linux, but it's not safe with CUDA.
        # 'spawn' creates a new process from scratch, avoiding CUDA re-initialization issues.
        mp.set_start_method("spawn", force=True)
    except RuntimeError:
        # This can happen if the context is already set.
        pass
    demo.queue().launch()