File size: 10,210 Bytes
9c72a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import torch
import flashinfer
import matplotlib.pyplot as plt

def get_indptr_from_mask(mask, query):
    # query shows the device of the indptr
    # indptr (torch.Tensor) - the block index pointer of the block-sparse matrix on row dimension,
    # shape `(MB + 1,)`, where `MB` is the number of blocks in the row dimension.
    # The first element is always 0, and the last element is the number of blocks in the row dimension.
    # The rest of the elements are the number of blocks in each row.
    # the mask is already a block sparse mask
    indptr = torch.zeros(mask.shape[0] + 1, device=query.device, dtype=torch.int32)
    indptr[0] = 0
    row_counts = mask.sum(dim=1).flatten()  # Ensure 1D output [num_blocks_row]
    indptr[1:] = torch.cumsum(row_counts, dim=0)
    return indptr

def get_indices_from_mask(mask, query):
    # indices (torch.Tensor) - the block indices of the block-sparse matrix on column dimension,
    # shape `(nnz,),` where `nnz` is the number of non-zero blocks.
    # The elements in `indices` array should be less than `NB`: the number of blocks in the column dimension.
    nonzero_indices = torch.nonzero(mask)
    indices = nonzero_indices[:, 1].to(dtype=torch.int32, device=query.device)
    return indices

def shrinkMaskStrict(mask, block_size=128):
    seqlen = mask.shape[0]
    block_num = seqlen // block_size
    mask = mask[:block_num * block_size, :block_num * block_size].view(block_num, block_size, block_num, block_size)
    col_densities = mask.sum(dim = 1) / block_size
    # we want the minimum non-zero column density in the block
    non_zero_densities = col_densities > 0
    high_density_cols = col_densities > 1/3
    frac_high_density_cols = high_density_cols.sum(dim=-1) / (non_zero_densities.sum(dim=-1) + 1e-9)
    block_mask = frac_high_density_cols > 0.6
    block_mask[0:0] = True
    block_mask[-1:-1] = True
    return block_mask

def pad_qkv(input_tensor, block_size=128):
    """
    Pad the input tensor to be a multiple of the block size.
    input shape: (seqlen, num_heads, hidden_dim)
    """
    seqlen, num_heads, hidden_dim = input_tensor.shape
    # Calculate the necessary padding
    padding_length = (block_size - (seqlen % block_size)) % block_size
    # Create a padded tensor with zeros
    padded_tensor = torch.zeros((seqlen + padding_length, num_heads, hidden_dim), device=input_tensor.device, dtype=input_tensor.dtype)
    # Copy the original tensor into the padded tensor
    padded_tensor[:seqlen, :, :] = input_tensor
    
    return padded_tensor

def get_diagonal_split_mask(i, j, token_per_frame, sparse_type, query):
    assert(sparse_type in ["radial"])
    dist = abs(i - j)
    group = dist.bit_length()
    threshold = 128 # hardcoded threshold for now, which is equal to block-size
    decay_length = 2 ** token_per_frame.bit_length() / 2 ** group
    if decay_length >= threshold:
        return torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
    
    split_factor = int(threshold / decay_length)
    modular = dist % split_factor
    if modular == 0:
        return torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
    else:
        return torch.zeros((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)

def get_window_width(i, j, token_per_frame, sparse_type, num_frame, decay_factor=1, block_size=128, model_type=None):
    assert(sparse_type in ["radial"])
    dist = abs(i - j)
    if model_type == "wan":
        if dist < 1:
            return token_per_frame
        if dist == 1:
            return token_per_frame // 2
    elif model_type == "hunyuan":
        if dist <= 1:
            return token_per_frame
    else:
        raise ValueError(f"Unknown model type: {model_type}")
    group = dist.bit_length()
    decay_length = 2 ** token_per_frame.bit_length() / 2 ** group * decay_factor
    threshold = block_size
    if decay_length >= threshold:
        return decay_length
    else:
        return threshold

def gen_log_mask_shrinked(query, s, video_token_num, num_frame, block_size=128, sparse_type="log", decay_factor=0.5, model_type=None):
    """
    A more memory friendly version, we generate the attention mask of each frame pair at a time,
    shrinks it, and stores it into the final result
    """
    final_log_mask = torch.zeros((s // block_size, s // block_size), device=query.device, dtype=torch.bool)
    token_per_frame = video_token_num // num_frame
    video_text_border = video_token_num // block_size

    col_indices = torch.arange(0, token_per_frame, device=query.device).view(1, -1)
    row_indices = torch.arange(0, token_per_frame, device=query.device).view(-1, 1)
    final_log_mask[video_text_border:] = True
    final_log_mask[:, video_text_border:] = True
    for i in range(num_frame):
        for j in range(num_frame):
            local_mask = torch.zeros((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
            if j == 0: # this is attention sink
                local_mask = torch.ones((token_per_frame, token_per_frame), device=query.device, dtype=torch.bool)
            else:
                window_width = get_window_width(i, j, token_per_frame, sparse_type, num_frame, decay_factor=decay_factor, block_size=block_size, model_type=model_type)
                local_mask = torch.abs(col_indices - row_indices) <= window_width
                split_mask = get_diagonal_split_mask(i, j, token_per_frame, sparse_type, query)
                local_mask = torch.logical_and(local_mask, split_mask)

            remainder_row = (i * token_per_frame) % block_size
            remainder_col = (j * token_per_frame) % block_size
            # get the padded size
            all_length_row = remainder_row + ((token_per_frame - 1) // block_size + 1) * block_size
            all_length_col = remainder_col + ((token_per_frame - 1) // block_size + 1) * block_size
            padded_local_mask = torch.zeros((all_length_row, all_length_col), device=query.device, dtype=torch.bool)
            padded_local_mask[remainder_row:remainder_row + token_per_frame, remainder_col:remainder_col + token_per_frame] = local_mask
            # shrink the mask
            block_mask = shrinkMaskStrict(padded_local_mask, block_size=block_size)
            # set the block mask to the final log mask
            block_row_start = (i * token_per_frame) // block_size
            block_col_start = (j * token_per_frame) // block_size
            block_row_end = block_row_start + block_mask.shape[0]
            block_col_end = block_col_start + block_mask.shape[1]
            final_log_mask[block_row_start:block_row_end, block_col_start:block_col_end] = torch.logical_or(
                final_log_mask[block_row_start:block_row_end, block_col_start:block_col_end], block_mask)
    print(f"mask sparsity: {1 - final_log_mask.sum() / final_log_mask.numel()}")
    return final_log_mask

class MaskMap:

    def __init__(self, video_token_num=25440, num_frame=16):
        self.video_token_num = video_token_num
        self.num_frame = num_frame
        self.log_mask = None

    def queryLogMask(self, query, sparse_type, block_size=128, decay_factor=0.5, model_type=None):
        log_mask = torch.ones((query.shape[0] // block_size, query.shape[0] // block_size), device=query.device, dtype=torch.bool)
        if self.log_mask is None:
            self.log_mask = gen_log_mask_shrinked(query, query.shape[0], self.video_token_num, self.num_frame, sparse_type=sparse_type, decay_factor=decay_factor, model_type=model_type, block_size=block_size)
        block_bound = self.video_token_num // block_size
        log_mask[:block_bound, :block_bound] = self.log_mask[:block_bound, :block_bound]
        return log_mask

def RadialAttention(query, key, value, mask_map=None, sparsity_type="radial", block_size=128, decay_factor=1, model_type=None):
    orig_seqlen, num_head, hidden_dim = query.shape
    
    query = pad_qkv(query, block_size=block_size)
    key = pad_qkv(key, block_size=block_size)
    value = pad_qkv(value, block_size=block_size)
    
    mask = mask_map.queryLogMask(query, sparsity_type, block_size=block_size, decay_factor=decay_factor, model_type=model_type) if mask_map else None
    seqlen = query.shape[0]
    workspace_buffer = torch.empty(128 * 1024 * 1024, device=query.device, dtype=torch.uint8)
    bsr_wrapper = flashinfer.BlockSparseAttentionWrapper(
        workspace_buffer,
        backend="fa2",
    )
    
    indptr = get_indptr_from_mask(mask, query)
    indices = get_indices_from_mask(mask, query)
    bsr_wrapper.plan(
        indptr=indptr,
        indices=indices,
        M=seqlen,
        N=seqlen,
        R=block_size,
        C=block_size,
        num_qo_heads=num_head,
        num_kv_heads=num_head,
        head_dim=hidden_dim,
    )
    
    o = bsr_wrapper.run(query, key, value)
    return o[:orig_seqlen, :, :]

if __name__ == "__main__":
    query = torch.randn(1, 2, 4, 64).cuda()
    # mask = torch.tensor([
    #     [True, False, True, False],
    #     [False, True, False, True],
    #     [True, False, False, True],
    #     [False, True, True, False]
    # ], dtype=torch.bool)
    # indices = get_indices_from_mask(mask, query)
    # indptr = get_indptr_from_mask(mask, query)
    # print("Indices: ", indices)
    # print("Indptr: ", indptr)
    video_token_num = 3840 * 30
    num_frame = 30
    token_per_frame = video_token_num / num_frame
    padded_video_token_num = ((video_token_num + 1) // 128 + 1) * 128
    print("padded: ", padded_video_token_num)
    temporal_mask = gen_log_mask_shrinked(query, padded_video_token_num, video_token_num, num_frame, sparse_type="radial", decay_factor=1, model_type="hunyuan")
    plt.figure(figsize=(10, 8), dpi=500)

    # 显示图像
    plt.imshow(temporal_mask.cpu().numpy()[:, :], cmap='hot')
    plt.colorbar()
    plt.title("Temporal Mask")

    # 保存图像(移除了quality参数)
    plt.savefig("temporal_mask.png",
                dpi=300,
                bbox_inches='tight',
                pad_inches=0.1)

    plt.close()
    # save the mask tensor
    torch.save(temporal_mask, "temporal_mask.pt")