File size: 27,416 Bytes
9c72a9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import torch
from typing import Any, Dict, Optional, Tuple, Union, List, Callable
from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoSingleTransformerBlock, HunyuanVideoTransformerBlock, HunyuanVideoTransformer3DModel
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers import HunyuanVideoPipeline
from diffusers.utils import USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers, logging, is_torch_xla_available
logger = logging.get_logger(__name__)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps
import numpy as np

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm
    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

DEFAULT_PROMPT_TEMPLATE = {
    "template": (
        "<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
        "1. The main content and theme of the video."
        "2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
        "3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
        "4. background environment, light, style and atmosphere."
        "5. camera angles, movements, and transitions used in the video:<|eot_id|>"
        "<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
    ),
    "crop_start": 95,
}

class HunyuanVideoSingleTransformerBlockSparse(HunyuanVideoSingleTransformerBlock):
    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        timestep: Optional[torch.Tensor] = None,
        numeral_timestep: Optional[torch.Tensor] = None,
        *args,
        **kwargs,
    ) -> torch.Tensor:
        text_seq_length = encoder_hidden_states.shape[1]
        hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)

        residual = hidden_states

        # 1. Input normalization
        norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))

        norm_hidden_states, norm_encoder_hidden_states = (
            norm_hidden_states[:, :-text_seq_length, :],
            norm_hidden_states[:, -text_seq_length:, :],
        )

        # 2. Attention
        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            attention_mask=attention_mask,
            image_rotary_emb=image_rotary_emb,
            timestep=timestep,
            numeral_timestep=numeral_timestep,
        )
        attn_output = torch.cat([attn_output, context_attn_output], dim=1)

        # 3. Modulation and residual connection
        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states)
        hidden_states = hidden_states + residual

        hidden_states, encoder_hidden_states = (
            hidden_states[:, :-text_seq_length, :],
            hidden_states[:, -text_seq_length:, :],
        )
        return hidden_states, encoder_hidden_states
    
class HunyuanVideoTransformerBlockSparse(HunyuanVideoTransformerBlock):
    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        timestep: Optional[torch.Tensor] = None,
        numeral_timestep: Optional[torch.Tensor] = None,
        *args,
        **kwargs,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # 1. Input normalization
        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
        norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
            encoder_hidden_states, emb=temb
        )

        # 2. Joint attention
        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            attention_mask=attention_mask,
            image_rotary_emb=freqs_cis,
            timestep=timestep,
            numeral_timestep=numeral_timestep,
        )

        # 3. Modulation and residual connection
        hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1)
        encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)

        norm_hidden_states = self.norm2(hidden_states)
        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)

        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]

        # 4. Feed-forward
        ff_output = self.ff(norm_hidden_states)
        context_ff_output = self.ff_context(norm_encoder_hidden_states)

        hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
        encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output

        return hidden_states, encoder_hidden_states
    
class HunyuanVideoTransformer3DModelSparse(HunyuanVideoTransformer3DModel):
     def forward(
        self,
        hidden_states: torch.Tensor,
        timestep: torch.LongTensor,
        encoder_hidden_states: torch.Tensor,
        encoder_attention_mask: torch.Tensor,
        pooled_projections: torch.Tensor,
        guidance: torch.Tensor = None,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        return_dict: bool = True,
        numeral_timestep: Optional[torch.Tensor] = None,
    ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
        if attention_kwargs is not None:
            attention_kwargs = attention_kwargs.copy()
            lora_scale = attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
                )

        batch_size, num_channels, num_frames, height, width = hidden_states.shape
        p, p_t = self.config.patch_size, self.config.patch_size_t
        post_patch_num_frames = num_frames // p_t
        post_patch_height = height // p
        post_patch_width = width // p
        first_frame_num_tokens = 1 * post_patch_height * post_patch_width

        # 1. RoPE
        image_rotary_emb = self.rope(hidden_states)

        # 2. Conditional embeddings
        temb, token_replace_emb = self.time_text_embed(timestep, pooled_projections, guidance)

        hidden_states = self.x_embedder(hidden_states)
        encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask)

        # 3. Attention mask preparation
        latent_sequence_length = hidden_states.shape[1]
        condition_sequence_length = encoder_hidden_states.shape[1]
        sequence_length = latent_sequence_length + condition_sequence_length
        attention_mask = torch.ones(
            batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool
        )  # [B, N]
        effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int)  # [B,]
        effective_sequence_length = latent_sequence_length + effective_condition_sequence_length
        indices = torch.arange(sequence_length, device=hidden_states.device).unsqueeze(0)  # [1, N]
        mask_indices = indices >= effective_sequence_length.unsqueeze(1)  # [B, N]
        attention_mask = attention_mask.masked_fill(mask_indices, False)
        attention_mask = attention_mask.unsqueeze(1).unsqueeze(1)  # [B, 1, 1, N]

        # 4. Transformer blocks
        if torch.is_grad_enabled() and self.gradient_checkpointing:
            for block in self.transformer_blocks:
                hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
                    block,
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    image_rotary_emb,
                    timestep,
                    numeral_timestep,
                    token_replace_emb,
                    first_frame_num_tokens,
                )

            for block in self.single_transformer_blocks:
                hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
                    block,
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    image_rotary_emb,
                    timestep,
                    numeral_timestep,
                    token_replace_emb,
                    first_frame_num_tokens,
                )

        else:
            for block in self.transformer_blocks:
                hidden_states, encoder_hidden_states = block(
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    image_rotary_emb,
                    timestep,
                    numeral_timestep,
                    token_replace_emb,
                    first_frame_num_tokens,
                )

            for block in self.single_transformer_blocks:
                hidden_states, encoder_hidden_states = block(
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    attention_mask,
                    image_rotary_emb,
                    timestep,
                    numeral_timestep,
                    token_replace_emb,
                    first_frame_num_tokens,
                )

        # 5. Output projection
        hidden_states = self.norm_out(hidden_states, temb)
        hidden_states = self.proj_out(hidden_states)

        hidden_states = hidden_states.reshape(
            batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p
        )
        hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
        hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (hidden_states,)

        return Transformer2DModelOutput(sample=hidden_states)
    
class HunyuanVideoPipelineSparse(HunyuanVideoPipeline):
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Union[str, List[str]] = None,
        negative_prompt: Union[str, List[str]] = None,
        negative_prompt_2: Union[str, List[str]] = None,
        height: int = 720,
        width: int = 1280,
        num_frames: int = 129,
        num_inference_steps: int = 50,
        sigmas: List[float] = None,
        true_cfg_scale: float = 1.0,
        guidance_scale: float = 6.0,
        num_videos_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        pooled_prompt_embeds: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        attention_kwargs: Optional[Dict[str, Any]] = None,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
        max_sequence_length: int = 256,
    ):
        r"""
        The call function to the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
                will be used instead.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
                not greater than `1`).
            negative_prompt_2 (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
                `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
            height (`int`, defaults to `720`):
                The height in pixels of the generated image.
            width (`int`, defaults to `1280`):
                The width in pixels of the generated image.
            num_frames (`int`, defaults to `129`):
                The number of frames in the generated video.
            num_inference_steps (`int`, defaults to `50`):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            sigmas (`List[float]`, *optional*):
                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
                will be used.
            true_cfg_scale (`float`, *optional*, defaults to 1.0):
                When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
            guidance_scale (`float`, defaults to `6.0`):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality. Note that the only available HunyuanVideo model is
                CFG-distilled, which means that traditional guidance between unconditional and conditional latent is
                not applied.
            num_videos_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
                generation deterministic.
            latents (`torch.Tensor`, *optional*):
                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor is generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
                provided, text embeddings are generated from the `prompt` input argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generated image. Choose between `PIL.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple.
            attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
            callback_on_step_end_tensor_inputs (`List`, *optional*):
                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
                `._callback_tensor_inputs` attribute of your pipeline class.

        Examples:

        Returns:
            [`~HunyuanVideoPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned
                where the first element is a list with the generated images and the second element is a list of `bool`s
                indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            prompt_embeds,
            callback_on_step_end_tensor_inputs,
            prompt_template,
        )

        has_neg_prompt = negative_prompt is not None or (
            negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
        )
        do_true_cfg = true_cfg_scale > 1 and has_neg_prompt

        self._guidance_scale = guidance_scale
        self._attention_kwargs = attention_kwargs
        self._current_timestep = None
        self._interrupt = False

        device = self._execution_device

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # 3. Encode input prompt
        transformer_dtype = self.transformer.dtype
        prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_template=prompt_template,
            num_videos_per_prompt=num_videos_per_prompt,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            device=device,
            max_sequence_length=max_sequence_length,
        )
        prompt_embeds = prompt_embeds.to(transformer_dtype)
        prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
        pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)

        if do_true_cfg:
            negative_prompt_embeds, negative_pooled_prompt_embeds, negative_prompt_attention_mask = self.encode_prompt(
                prompt=negative_prompt,
                prompt_2=negative_prompt_2,
                prompt_template=prompt_template,
                num_videos_per_prompt=num_videos_per_prompt,
                prompt_embeds=negative_prompt_embeds,
                pooled_prompt_embeds=negative_pooled_prompt_embeds,
                prompt_attention_mask=negative_prompt_attention_mask,
                device=device,
                max_sequence_length=max_sequence_length,
            )
            negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
            negative_prompt_attention_mask = negative_prompt_attention_mask.to(transformer_dtype)
            negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)

        # 4. Prepare timesteps
        sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
        timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)

        # 5. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_videos_per_prompt,
            num_channels_latents,
            height,
            width,
            num_frames,
            torch.float32,
            device,
            generator,
            latents,
        )

        # 6. Prepare guidance condition
        guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)

        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                self._current_timestep = t
                latent_model_input = latents.to(transformer_dtype)
                # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
                timestep = t.expand(latents.shape[0]).to(latents.dtype)

                noise_pred = self.transformer(
                    hidden_states=latent_model_input,
                    timestep=timestep,
                    encoder_hidden_states=prompt_embeds,
                    encoder_attention_mask=prompt_attention_mask,
                    pooled_projections=pooled_prompt_embeds,
                    guidance=guidance,
                    attention_kwargs=attention_kwargs,
                    return_dict=False,
                    numeral_timestep=i,
                )[0]
                if do_true_cfg:
                    neg_noise_pred = self.transformer(
                        hidden_states=latent_model_input,
                        timestep=timestep,
                        encoder_hidden_states=negative_prompt_embeds,
                        encoder_attention_mask=negative_prompt_attention_mask,
                        pooled_projections=negative_pooled_prompt_embeds,
                        guidance=guidance,
                        attention_kwargs=attention_kwargs,
                        return_dict=False,
                        numeral_timestep=i,
                    )[0]
                    noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        self._current_timestep = None

        if not output_type == "latent":
            latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
            video = self.vae.decode(latents, return_dict=False)[0]
            video = self.video_processor.postprocess_video(video, output_type=output_type)
        else:
            video = latents

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video,)

        return HunyuanVideoPipelineOutput(frames=video)
    
def replace_sparse_forward():
    HunyuanVideoSingleTransformerBlock.forward = HunyuanVideoSingleTransformerBlockSparse.forward
    HunyuanVideoTransformerBlock.forward = HunyuanVideoTransformerBlockSparse.forward
    HunyuanVideoTransformer3DModel.forward = HunyuanVideoTransformer3DModelSparse.forward
    HunyuanVideoPipeline.__call__ = HunyuanVideoPipelineSparse.__call__