Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,416 Bytes
9c72a9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import torch
from typing import Any, Dict, Optional, Tuple, Union, List, Callable
from diffusers.models.transformers.transformer_hunyuan_video import HunyuanVideoSingleTransformerBlock, HunyuanVideoTransformerBlock, HunyuanVideoTransformer3DModel
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers import HunyuanVideoPipeline
from diffusers.utils import USE_PEFT_BACKEND, scale_lora_layers, unscale_lora_layers, logging, is_torch_xla_available
logger = logging.get_logger(__name__)
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.pipelines.hunyuan_video.pipeline_output import HunyuanVideoPipelineOutput
from diffusers.pipelines.hunyuan_video.pipeline_hunyuan_video import retrieve_timesteps
import numpy as np
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
DEFAULT_PROMPT_TEMPLATE = {
"template": (
"<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: "
"1. The main content and theme of the video."
"2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects."
"3. Actions, events, behaviors temporal relationships, physical movement changes of the objects."
"4. background environment, light, style and atmosphere."
"5. camera angles, movements, and transitions used in the video:<|eot_id|>"
"<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>"
),
"crop_start": 95,
}
class HunyuanVideoSingleTransformerBlockSparse(HunyuanVideoSingleTransformerBlock):
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
timestep: Optional[torch.Tensor] = None,
numeral_timestep: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
text_seq_length = encoder_hidden_states.shape[1]
hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1)
residual = hidden_states
# 1. Input normalization
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
norm_hidden_states, norm_encoder_hidden_states = (
norm_hidden_states[:, :-text_seq_length, :],
norm_hidden_states[:, -text_seq_length:, :],
)
# 2. Attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=image_rotary_emb,
timestep=timestep,
numeral_timestep=numeral_timestep,
)
attn_output = torch.cat([attn_output, context_attn_output], dim=1)
# 3. Modulation and residual connection
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states)
hidden_states = hidden_states + residual
hidden_states, encoder_hidden_states = (
hidden_states[:, :-text_seq_length, :],
hidden_states[:, -text_seq_length:, :],
)
return hidden_states, encoder_hidden_states
class HunyuanVideoTransformerBlockSparse(HunyuanVideoTransformerBlock):
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
timestep: Optional[torch.Tensor] = None,
numeral_timestep: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
# 1. Input normalization
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
encoder_hidden_states, emb=temb
)
# 2. Joint attention
attn_output, context_attn_output = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
attention_mask=attention_mask,
image_rotary_emb=freqs_cis,
timestep=timestep,
numeral_timestep=numeral_timestep,
)
# 3. Modulation and residual connection
hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1)
encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1)
norm_hidden_states = self.norm2(hidden_states)
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
# 4. Feed-forward
ff_output = self.ff(norm_hidden_states)
context_ff_output = self.ff_context(norm_encoder_hidden_states)
hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
return hidden_states, encoder_hidden_states
class HunyuanVideoTransformer3DModelSparse(HunyuanVideoTransformer3DModel):
def forward(
self,
hidden_states: torch.Tensor,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: torch.Tensor,
pooled_projections: torch.Tensor,
guidance: torch.Tensor = None,
attention_kwargs: Optional[Dict[str, Any]] = None,
return_dict: bool = True,
numeral_timestep: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
if attention_kwargs is not None:
attention_kwargs = attention_kwargs.copy()
lora_scale = attention_kwargs.pop("scale", 1.0)
else:
lora_scale = 1.0
if USE_PEFT_BACKEND:
# weight the lora layers by setting `lora_scale` for each PEFT layer
scale_lora_layers(self, lora_scale)
else:
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
logger.warning(
"Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective."
)
batch_size, num_channels, num_frames, height, width = hidden_states.shape
p, p_t = self.config.patch_size, self.config.patch_size_t
post_patch_num_frames = num_frames // p_t
post_patch_height = height // p
post_patch_width = width // p
first_frame_num_tokens = 1 * post_patch_height * post_patch_width
# 1. RoPE
image_rotary_emb = self.rope(hidden_states)
# 2. Conditional embeddings
temb, token_replace_emb = self.time_text_embed(timestep, pooled_projections, guidance)
hidden_states = self.x_embedder(hidden_states)
encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask)
# 3. Attention mask preparation
latent_sequence_length = hidden_states.shape[1]
condition_sequence_length = encoder_hidden_states.shape[1]
sequence_length = latent_sequence_length + condition_sequence_length
attention_mask = torch.ones(
batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool
) # [B, N]
effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,]
effective_sequence_length = latent_sequence_length + effective_condition_sequence_length
indices = torch.arange(sequence_length, device=hidden_states.device).unsqueeze(0) # [1, N]
mask_indices = indices >= effective_sequence_length.unsqueeze(1) # [B, N]
attention_mask = attention_mask.masked_fill(mask_indices, False)
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # [B, 1, 1, N]
# 4. Transformer blocks
if torch.is_grad_enabled() and self.gradient_checkpointing:
for block in self.transformer_blocks:
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
image_rotary_emb,
timestep,
numeral_timestep,
token_replace_emb,
first_frame_num_tokens,
)
for block in self.single_transformer_blocks:
hidden_states, encoder_hidden_states = self._gradient_checkpointing_func(
block,
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
image_rotary_emb,
timestep,
numeral_timestep,
token_replace_emb,
first_frame_num_tokens,
)
else:
for block in self.transformer_blocks:
hidden_states, encoder_hidden_states = block(
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
image_rotary_emb,
timestep,
numeral_timestep,
token_replace_emb,
first_frame_num_tokens,
)
for block in self.single_transformer_blocks:
hidden_states, encoder_hidden_states = block(
hidden_states,
encoder_hidden_states,
temb,
attention_mask,
image_rotary_emb,
timestep,
numeral_timestep,
token_replace_emb,
first_frame_num_tokens,
)
# 5. Output projection
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.reshape(
batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p
)
hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7)
hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3)
if USE_PEFT_BACKEND:
# remove `lora_scale` from each PEFT layer
unscale_lora_layers(self, lora_scale)
if not return_dict:
return (hidden_states,)
return Transformer2DModelOutput(sample=hidden_states)
class HunyuanVideoPipelineSparse(HunyuanVideoPipeline):
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
negative_prompt_2: Union[str, List[str]] = None,
height: int = 720,
width: int = 1280,
num_frames: int = 129,
num_inference_steps: int = 50,
sigmas: List[float] = None,
true_cfg_scale: float = 1.0,
guidance_scale: float = 6.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
pooled_prompt_embeds: Optional[torch.Tensor] = None,
prompt_attention_mask: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
prompt_template: Dict[str, Any] = DEFAULT_PROMPT_TEMPLATE,
max_sequence_length: int = 256,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
will be used instead.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
not greater than `1`).
negative_prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
height (`int`, defaults to `720`):
The height in pixels of the generated image.
width (`int`, defaults to `1280`):
The width in pixels of the generated image.
num_frames (`int`, defaults to `129`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
sigmas (`List[float]`, *optional*):
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
will be used.
true_cfg_scale (`float`, *optional*, defaults to 1.0):
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
guidance_scale (`float`, defaults to `6.0`):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality. Note that the only available HunyuanVideo model is
CFG-distilled, which means that traditional guidance between unconditional and conditional latent is
not applied.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`HunyuanVideoPipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
Examples:
Returns:
[`~HunyuanVideoPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`HunyuanVideoPipelineOutput`] is returned, otherwise a `tuple` is returned
where the first element is a list with the generated images and the second element is a list of `bool`s
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds,
callback_on_step_end_tensor_inputs,
prompt_template,
)
has_neg_prompt = negative_prompt is not None or (
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
)
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# 3. Encode input prompt
transformer_dtype = self.transformer.dtype
prompt_embeds, pooled_prompt_embeds, prompt_attention_mask = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_template=prompt_template,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
prompt_attention_mask=prompt_attention_mask,
device=device,
max_sequence_length=max_sequence_length,
)
prompt_embeds = prompt_embeds.to(transformer_dtype)
prompt_attention_mask = prompt_attention_mask.to(transformer_dtype)
pooled_prompt_embeds = pooled_prompt_embeds.to(transformer_dtype)
if do_true_cfg:
negative_prompt_embeds, negative_pooled_prompt_embeds, negative_prompt_attention_mask = self.encode_prompt(
prompt=negative_prompt,
prompt_2=negative_prompt_2,
prompt_template=prompt_template,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=negative_pooled_prompt_embeds,
prompt_attention_mask=negative_prompt_attention_mask,
device=device,
max_sequence_length=max_sequence_length,
)
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
negative_prompt_attention_mask = negative_prompt_attention_mask.to(transformer_dtype)
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.to(transformer_dtype)
# 4. Prepare timesteps
sigmas = np.linspace(1.0, 0.0, num_inference_steps + 1)[:-1] if sigmas is None else sigmas
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, sigmas=sigmas)
# 5. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_frames,
torch.float32,
device,
generator,
latents,
)
# 6. Prepare guidance condition
guidance = torch.tensor([guidance_scale] * latents.shape[0], dtype=transformer_dtype, device=device) * 1000.0
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = latents.to(transformer_dtype)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
encoder_attention_mask=prompt_attention_mask,
pooled_projections=pooled_prompt_embeds,
guidance=guidance,
attention_kwargs=attention_kwargs,
return_dict=False,
numeral_timestep=i,
)[0]
if do_true_cfg:
neg_noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
encoder_attention_mask=negative_prompt_attention_mask,
pooled_projections=negative_pooled_prompt_embeds,
guidance=guidance,
attention_kwargs=attention_kwargs,
return_dict=False,
numeral_timestep=i,
)[0]
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if not output_type == "latent":
latents = latents.to(self.vae.dtype) / self.vae.config.scaling_factor
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return HunyuanVideoPipelineOutput(frames=video)
def replace_sparse_forward():
HunyuanVideoSingleTransformerBlock.forward = HunyuanVideoSingleTransformerBlockSparse.forward
HunyuanVideoTransformerBlock.forward = HunyuanVideoTransformerBlockSparse.forward
HunyuanVideoTransformer3DModel.forward = HunyuanVideoTransformer3DModelSparse.forward
HunyuanVideoPipeline.__call__ = HunyuanVideoPipelineSparse.__call__
|